
Methods for Finding Inuences on Program Failure

�

Adele E. Howe Aaron D. Fuegi

Computer Science Department

Colorado State University

Fort Collins, CO 80524

howe@cs.colostate.edu

Abstract

This paper describes two approaches for detecting

patterns of detrimental program behavior, called de-

pendencies, over long periods of time; these dependen-

cies indicate cases where previous events inuence the

occurrence of later failure. This research extends a

previous approach that was limited to temporally ad-

jacent events. The two approaches, heuristic search

and local search, are demonstrated on several data sets

from an AI planner and are compared on their e�-

ciency and the dependencies they detect.

1 The Problem

You carefully design and implement your program.

When you test it and it fails, you need to determine

what caused the failure. The problem is that the

cause of the failure may occur long before its mani-

festation. In this paper, we will describe two statis-

tical methods for �nding detrimental patterns (com-

binations of possible causes and failure) in execution

traces. These methods extend previous work on �nd-

ing discrete causal inuences over short time hori-

zons [5] and have been applied primarily to identifying

causes of failure in a planning system.

1.1 Previous Approaches to Solution

Generally speaking, the problem is modeling causal

inuences on failure. We wish to know whether one

event inuences the occurrence of another. Previous

research has addressed two aspects: modeling failure

and modeling causal inuences. This section will de-

scribe some approaches to each of these.

�

This research was supported by a Colorado State Univer-

sity Diversity Career Enhancement grant and ARPA-AFOSR

contract F30602-93-C-0100. The US Government is authorized

to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright notation hereon.

Modeling Failures in Software In Software En-

gineering, the emphasis of modeling failure is on fault

tolerance and debugging. Approaches to fault toler-

ance decide how to avoid or repair failures through a

complete model, built by an expert, of failure and its

causes; common techniques are time Petri net mod-

els, real-time logic and fault tree analysis [6]. Two

other approaches to modeling software bugs are a for-

mal language for describing program failures [1] and

a belief network of canonical bugs [2]. These models

are constructed all or in large part by a programmer.

Statistically Modeling Causal Inuences Re-

cent research has emphasized causal induction, infer-

ring causal structure from observational data. One

well-known approach [7] infers causal relationships

from covariance data by testing conditional indepen-

dence of variables. Another approach by Cohen et. al

[3] extends statistical path analysis to construct the

structure of the causal model (i.e., the relationships

between variables and the directionality of the rela-

tionships) as well as to estimate the strength of those

relationships. As in the Pearl's approach, their algo-

rithm, FBD, uses covariance information to build the

model, but directs the incremental construction of a

multi-layered causal diagram heuristically.

These algorithms have been shown to e�ciently in-

fer the causal structure of extremely complex systems.

However, they do not allow cycles in the models and

require covariance information, which means that the

underlying variables should be numeric.

2 Dependency Detection

An approach to modeling short-term categorical

causal inuences on failure is Dependency Detection

[5]. Dependency Detection applies statistical tech-

niques to build a set of simple models of failure. Like

the above approaches to modeling failures, it relates

1

alternative paths to a particular failure; unlike these

approaches, it does not do so a priori and a human

is not involved in the process. Like causal inuence

techniques, it applies statistics to detect trends and

co-occurrences, but unlike them, it is insensitive to

repetitions in the same trace and focuses on events

(i.e., categorical rather than numerical data).

Dependency Detection was developed originally to

search the Phoenix planner's failure recovery execu-

tion traces for immediately preceding causes of failure.

The execution traces were sequences of alternating

failures and the recovery actions that repaired them,

e.g., F

a

! R

aa

! F

b

! R

aa

! F

a

! R

zz

. Because

this version tested all combinations of failures and re-

covery actions, search for long patterns was computa-

tionally impractical. DD was generalized by removing

references to Phoenix and recovery actions and ex-

tending its search to temporally separated causes and

e�ects. The generalized DD algorithm is:

1. Gather execution traces of the program.

2. Generate an initial set of patterns to be tested.

3. For each pattern

1

:

(a) Slide a window incrementally over the exe-

cution traces,

(b) At each window position, increment one of 4

counts: the pattern precursor is followed by

the pattern failure, the pattern precursor is

followed by another failure, some other pre-

cursor precedes the pattern failure and some

other precursor precedes some other failure.

(c) The four counts are arranged in a 2x2 contin-

gency table, and signi�cance is tested with

the G-test

2

.

4. Prune or add to the the set of patterns and repeat

from 3 until no test patterns left.

First, execution traces are collected; execution

traces are sequences of salient events (i.e., occurrences

expected to be of interest to the programmer such

as program failures, subroutine startups, changes to

key variable values, etc.) observed during execution

of the program. Such traces are searched for patterns

of some sequence of events that typically precede a

particular failure.

Second, we test the signi�cance of patterns. A pat-

tern has two parts: a combination of salient events

1

Formally, a pattern is a sequence of events comprisinga pre-

cursor and subsequent failure; a dependency is a pattern found

to be statistically signi�cant (i.e., � = 0:05, which indicates

a > :05 probability that the observed dependency was due to

chance).

2

A statistical test similar to the Chi-square that roughly tests

whether two observed ratios are signi�cantly di�erent.

for the precursor and a target failure type. The target

failure must appear as the last element in the window.

For a given pattern, incidence counts are gathered by

sliding a window over the execution traces. The win-

dow de�nes a area of length N which is checked for

the pattern. The window is re-positioned by moving

its last position (the target failure) to the next failure.

Figure 1 shows four positionings of the sliding window

for a pattern ofR

sp

(recovery action of type sp) for the

precursor and F

ip

(failure of type ip) for the failure.

Rsp → Fip → Rrp → Fip → Rsp → Fip → Rrp → Fnrs

1

2 0

1

Fip Fip

Rsp

Rsp

Figure 1: Constructing a contingency table for a [R

sp

,

F

ip

] pattern by sliding a window across execution

traces

Four counts are tallied for the contingency table.

Each window positioning contributes to one and only

one of the four cells in the contingency table for each

pattern tested. Assuming the �nal element (e.g., fail-

ure F

ip

in the �rst position of Figure 1) in the win-

dow matches the �nal element (e.g., F

ip

) in the target

pattern, the window contributes to the �rst column;

otherwise, it contributes to the second column. Sim-

ilarly, the remaining elements of the window and the

pattern precursor are compared. After sliding the win-

dow through the execution traces, the resulting con-

tingency table is analyzed to see if the target failure

was statistically dependent on the precursor.

Finally, the set of patterns is either increased or de-

creased. New patterns with potential can be added to

the set or insigni�cant or uninteresting (e.g., due to

lack of data or overlap with other patterns) patterns

can be removed from the test set. How the set of pat-

terns is initially set and then changed depends on the

search method. The remainder of the paper describes

two search methods for controlling dependency detec-

tion, heuristic and local search, and presents results

of �nding dependencies in execution data from an AI

planner (the Phoenix system).

2.1 Heuristic Search Methods

The search starts by seeding the pattern set with

a core set of patterns. Each pattern is tested; if the

pattern passes some evaluation criteria, then its ex-

tensions are added to the pattern set. This results in

heuristic, depth �rst search.

The patterns may consist of particular types of

events from the traces and wildcards for positions

within the pattern than may be any event. In the case

of Phoenix data, the core patterns are of the formE#F

where E is any event (i.e., action or failure) and # is

any number of wildcards from zero to seven. Patterns

are added to this core set when the \parent" pattern

still has wildcards and it passes certain criteria for

continuing evaluation.

The evaluation criteria is an additive combination

of a value based on pattern signi�cance and the num-

ber of instances of the pattern type. For each pat-

tern, signi�cance is ranked from one to three based on

the p for the contingency table (i.e., p < :05 is worth

three, p < :25 is worth two, else one for just found

in data). Number of instances is rated from one to

three based on the number of wildcards in the pattern

and the amount of data to support it (i.e., number of

instances of pattern should be greater than number

of wildcards times some threshold for three levels of

threshold) . If the two measures add to four or more,

then simple extensions to this pattern (�lling in wild-

cards with speci�c events) are added to the test set.

A summary of some of the results is presented in Ta-

ble 1. The percentage of signi�cant patterns does not

seem to be at all dependent on the length of the pat-

terns being analyzed, which suggests that the heuristic

control is not missing too many dependencies. On the

other hand, the quantity of patterns both found in

the data and analyzed as signi�cant roughly mono-

tonically increases as the length increases. This is

not surprising because longer patterns allow for far

more possible combinations. This explanation should

be partly o�set, though, because the availability of

data decreases with length.

2.2 Local Search Methods

Another approach is to apply local search tech-

niques to �nd relative order patterns. We shifted to

relative order for two reasons: �rst, it accounts for

irrelevant events appearing in the midst of an oth-

erwise causal sequence; second, because matching is

more exible, more patterns are likely to be found and

local search is more likely to be e�ective.

The algorithm is roughly the same as in the gen-

eral form with three di�erences. First, the window

size must be larger than the pattern; for a pattern of

size N , we use a window of size 2N . Second, a pattern

matches a given window position when the target fail-

ure is at the last position and when all the remaining

Pattern Length

Data Set 3 5 7 8 9

A Found 71 279 595 929 1623

Signi�cant 29 100 212 253 511

Ratio 41% 36% 36% 27% 31%

B Found 109 487 1328 784 2313

Signi�cant 33 175 480 274 818

Ratio 30% 36% 36% 35% 35%

C Found 141 615 1153 1385 3188

Signi�cant 62 212 387 536 1261

Ratio 44% 34% 34% 39% 40%

Table 1: Results of heuristic search on three represen-

tative Phoenix data sets

elements in the pattern appear in the window in the

same order they do in the pattern. Although a par-

ticular pattern could occur multiple times in a given

window, it contributes only one to a single cell in the

contingency table.

Third and most important, patterns are added to

the core set using local search. For each of some num-

ber of trials, the initial pattern is a pattern of length

N with the elements chosen randomly. Several lo-

cal search operators were considered that reorder and

replace pattern elements, but the best operator, in

terms of e�ciency and e�cacy, 1OPT optimizes one

element in the pattern at a time. Progressing through

the pattern elements in order, this operator considers

all available elements as replacements for the pattern

element being considered; the operator replaces the el-

ement originally in the position with the best element

for that position after testing all possibilities.

The results of applying the heuristic method sug-

gested that dependencies with many elements in com-

mon tend to both be signi�cant. This characteristic

is exploited by local search. We tested the e�cacy

of local search by searching for several length rela-

tive order dependencies. For each target failure, we

started with 100 randomly generated relative order

strings and searched for the highest rated neighbor

that could be reached from it. Table 2 shows the top

ranking dependencies found by local search for each

target failure for a relative order of length four as well

as the ratio of the trials that found a signi�cant de-

pendency. The searches �nd a signi�cant dependency

in about one-third of the trials, and the dependencies

found are highly signi�cant (the higher the G value,

the lower the probability that it is due to chance).

Searching for length �ve patterns exhibited similar, if

Dependency G P Trials

[NER RP NER VIT] 18.72 .0001 63/100

[NER BDU RM CFP] 8.44 .0037 29/100

[CCP RM CCP CCP] 75.62 .0001 35/100

[PTR RM RM PTR] 29.16 .0001 31/100

[CCP RM CCP NER] 19.04 .0001 41/100

[RP NER RV BDU] 7.20 .0073 21/100

[FNE CCV RM CCV] 6.90 .0086 27/100

[PRJ PRJ PRJ PRJ] 15.68 .0001 49/100

Table 2: Most signi�cant dependencies found by local

search with 100 trials on data set 1

slightly less successful, results; highly signi�cant de-

pendencies are found in, on average, 18 out of 200 tri-

als. Local search appears to be an e�cient method of

�nding highly signi�cant relative order dependencies.

3 Summary

Evaluation largely depends on whether models are

found to be useful for characterizing behavior. Depen-

dency detection was incorporated into a procedure for

debugging Phoenix called Failure Recovery Analysis

(FRA) [4]. Dependency detection identi�es problem-

atic sequences of events, which FRA relates to por-

tions of the knowledge base and then generates ex-

planations of how the knowledge base may have con-

tributed to the observed dependencies. Patterns dis-

covered through heuristic search have been used for

debugging in Failure Recovery Analysis; local search,

relative order patterns are being incorporated into the

process currently. Additionally, the code for the two

methods is available and has been incorporated into

the Common Lisp Analytical Statistics Package.

One problem with these searches is that a good

method �nds too many di�erent patterns. We would

like to cluster related dependencies to enrich their

meaning (e.g., �nd commonalities) and to reduce the

burden of looking over a long list. The search neigh-

borhood in the local search method provides a natu-

ral clustering: the signi�cant basins of attraction that

most locally optimal relative order patterns appear to

have. With local search, the algorithm can use the op-

timization procedures to �nd locally optimal patterns

and then back out of the basin at individual positions

to �nd other highly signi�cant related patterns.

To summarize the results, exhaustive search of arbi-

trary length patterns is impractical; however, both the

heuristic and local search methods are e�ective at de-

tecting long dependencies: they �nd a large number

in a manageable amount of computation time. The

most computationally intensive method (200 trials of

local search for patterns of length �ve with a partic-

ular target) required an hour; the least, a more con-

strained form of the heuristic search described here,

required 1-10 minutes. Heuristic methods are goal di-

rected and �nd a high proportion of signi�cant depen-

dencies for what is tested. The local search method

is data directed, �nds highly signi�cant dependencies

and provides a convenient method of clustering. Re-

lated work compensates for the exclusive use of cat-

egorical data, discrete events, by integrating depen-

dency models with path analysis models. Future work

will demonstrate how these models can be used to de-

bug di�erent knowledge based systems.

References

[1] Peter C. Bates and Jack C. Wileden. High-level

debugging of distributed systems: The behavioral

abstraction approach. COINS Dept. TR 83-29,

Univ. of Mass., March 1983.

[2] Lisa J. Burnell and Scott E. Talbot. Incorporating

probabilistic reasoning in a reactive program de-

bugging system. In Proceedings of the Ninth Con-

ference on Arti�cial Intelligence for Applications,

pages 321 {327, Orlando, FL, March 1-5 1993.

[3] Paul R. Cohen, Lisa A. Ballesteros, Dawn E. Gre-

gory, and Robert St. Amant. Regression can build

predictive causal models. TR 94-15, Computer Sci-

ence, Univ. of Mass., 1994.

[4] Adele E. Howe. Analyzing failure recovery to

improve planner design. In Proceedings of the

Tenth National Conference on Arti�cial Intelli-

gence, pages 387{393, July 1992.

[5] Adele E. Howe and Paul R. Cohen. Isolating

dependencies on failure by analyzing execution

traces. In Arti�cial Intelligence Planning Systems:

Proceedings of the First International Conference,

College Park, MD, 1992.

[6] Nancy G. Leveson. Software safety: Why, what,

and how. Computing Surveys, 18(2):125{163, June

1986.

[7] Judea Pearl and T. S. Verma. A theory of inferred

causation. In Principles of Knowledge Representa-

tion and Reasoning: Proceedings of the Second In-

ternational Conference, April 1991. Morgan Kauf-

mann.

