Python Parallelization

Summer 2025

Research Computing Services
IS&T

Download files:
https://scv.bu.edu/examples/python/tutorials/PythonPar/

BOSTOIN
UNIVERSITY

Start Spyder

= Your own computer: = On SCC OnDemand:
= Start Anaconda Navigator = Under Interactive Apps choose
= Find Spyder and launch it. Spyder.

= Load python3/3.12.4 and select 4
- cores, then click the Launch button.

() ANACONDA NAVIGATOR P

Spyder

ome Al spalications) on [bese ooy || c This app will launch an interactive Spyder desktop on a compute node.
s el Ui f
‘Env\mr\ments An extensible envirenment for interactive Web-based, interactive computing Run a Powershell terminal with your - List of modules to load (space Separaled]

and reproducible computing, based on the notebook envirenment. Edit and run current environment from Navigator

. Jupyter Notebook and Architecture human-readable docs while describing the activated —————P python3/3.124 Select M 3
W Leamning dats analysis

an Community

’ . Pre-Launch Command (optional)
| Launch | | Launch |

| Launch

Anaconda

Jump into pre-configured

Working Directory

Select Direct

PyCharm Community Qt Console Spyder i i
202233 Ass Ass The directory to start in. (Defaults to home directory.)
An IDE by JetBrains for pure Python PyQt GUI that supports inline figures] Scientific P'rthon Development
development. Supports code completion, proper multiline editing with syntax EnviRonment. Powerful Python IDE with
listing, and debugging. highlighting, graphical calltips, and mork advanced editing, interactive testing, Number of hours
debugging and introspection Features

Documentation 4
Anaconda Blog [Launch | [Launch | (Launeh |

Number of cores
—_—p 4

Number of gpus

UNIVERSITY

o]

Introduction

= Many programs can perform simultaneous operations, given multiple
processors to perform the work.

= Generally speaking, the burden of managing this lies on the programmer.

= |n this tutorial we’ll go over a variety of ways to achieve parallelism in
Python code.

BOSTON
UNIVERSITY

Limits on Program Speed

= |[nput/Output (I/O): The rate at which data can be read from a disk, a
network file server, a remote server, a sensor, a user’s physical inputs,
etc. limits the performance of the program.

= Memory: The guantity of memory on the system limits performance.

= CPU (or compute): The speed of the processor is the limit on

performance.
= This is most commonly the case for scientific computing.

BOSTON
UNIVERSITY

Types of Parallelization

= On the SCC: queue parallelization.
= You have N files to process. Submit N jobs.
= QOr, one |ob array that launches N jobs.
= This often requires little to no changes to your code...

= Multiple Processes

= Your program launches several copies of itself (or other programs) to solve the computational
problem.

= Multiple Threads

= Your program creates threads, which are parts of the same program that can execute
iIndependently of each other.

= Parallel Libraries
= Use a library that internally implements some kind of parallelization.

BOSTON
UNIVERSITY

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array

Performance Considerations

= Not every part of a program can benefit from parallelization.
= Some parts of program are inherently serial.

= Even for a function that can be done in parallel...

= |s it worth the programming effort?
= |s it worth the reduction in readability and ability to debug?

= Does the function use up enough program time to make parallel computation worth the
overhead?

= Parallelization is a form of optimization. Profile your code.
= For more on profiling — see our Python Optimization tutorial.

BOSTON
UNIVERSITY

Amdahl’s Law
Amdahl’'s Law o P
// Parallel Portion
16.00 7 50%
/ ——75%
14.00 / —90%
. . —95%
= The speedup ratio S is the _ 1200 /
ratio of time between the § 1000 o=
. : . /1A
serial code (T,) and the time]
when using N workers (T,): - Y
o AT |
S — Number of Processors -
(e)m
= This is the theoretical best speedup
achievable with parallelization.
N = number of threads or
processes Figure from Wikipedia.

BOSTON — :
f = frqctlon of program that

IS serial

https://en.wikipedia.org/wiki/Parallel_computing

A word of caution

= When using the Python
multiprocessing library, always
use the “if __name ”

convention in your main script:\

= This will make your script work
In interactive Python like
Spyder.

BOSTON
UNIVERSITY

import multiprocessing

i

python script here with functions

defined

i

def script function():

i

with multiprocessing.Pool(4) as p:

do python stuff here

code block etc

7

if

name == ' main ':

script_funggion()

= |tisrequired on Windows
even in Jupyter notebooks.

How many cores should Python use?

= The example file get_n_cores.py provides a function that
checks how many cores have been assigned to an SCC job.
= Based on the common Python library psutil

= |t will also work on your own computers and will choose the
number of installed cores.

= Feel free to use this in your own code.

BOSTON
UNIVERSITY

-
Let's Try!

= |n Spyder, open the file lin_alg.py = How does your computation scale
with the number of threads?

= The computation: a linear algebra

matrix-matrix multiplication. = |t plots the speedup ratio. What
= Completely CPU-bound, scales well did you expect? What if you
to multiple threads. change the size of the matrices?

BOSTON
UNIVERSITY

Logical, Physical, and Efficiency Cores

Speedup Ratio. Matrix size 4000

¥
&
3.0 1 H
I
&
: L]
25 4
(W] 2 |:|]
; Logical cores provide no benefit
15 - for compute-bound problems
10 A
1 2 3 4 5 B 7 B
M Cores

Intel Core i7-1165G7
= 4 real cores, 4 logical cores

BOSTON
UNIVERSITY

The Python psutil library can'’t yet
auto-detect efficiency cores. It will
report them as physical cores.

Speedup Ratio. Matrx size 3000

Efficiency cores used last
by the OS. Avoid these!

2 3 4 5 G 7 B
M Cores

Macbook Pro (from 2021)

= Apple M1 Pro CPU

= 6 performance cores, 2 efficiency
= About This Mac - More Info - System
Report

= get _n_cores() = reports 8 cores

https://github.com/giampaolo/psutil/issues/2034

Python Language Parallelism

= Python provides a number of ways to perform parallel (aka concurrent)
computations.

= Read the official docs.

threading and I/O-bound programs. Example: web server, network service
asyncio
multiprocessing CPU-bound parallel execution.

concurrent.futures Modern-style wrapper on top of threading & multiprocessing. Useful for GUIs or
porting code to Python that uses this approach.

subprocess Launching external processes.

BOSTON
UNIVERSITY

https://docs.python.org/3/library/concurrency.html

The Global Interpreter Lock

= The GIL limits the amount of multi-threading in the Python interpreter.
= Qriginally introduced as part of Python’s memory management system.
= For more detalls, see this explanation.

= Pure Python code runs in one thread only.

= This is unlike languages like Java, C#, C++, Fortran, Matlab, or R where threads are easily
used by the programmer.

= Multi-threaded code in Python is mostly implemented in external libraries.

BOSTON
UNIVERSITY

https://realpython.com/python-gil/

Python Threading

= The Python threading library allows for multiple threads to be created.
= Only 1 can actually execute at a time: do not use this for CPU-bound problems.
= This works well for I/O-bound problems.

= Each thread runs as soon as it has received data
= Most of the threads are waiting for data from the disk, the network, the user, etc.
= Application examples: Python web servers, file servers, network service, calling a web server API...

BOSTON
UNIVERSITY

https://docs.python.org/3/library/concurrency.html

Python Multiprocessing

= For CPU-bound problems multiple Python
processes can be launched to do computations in

parallel.
= |f you just want to parallelize a for loop, start here.

= The multiprocessing library handles inter-process
communication automatically.

= Most convenient interface: the Pool, which
provides a set of Python processes that divide
work between them.

BOSTON
UNIVERSITY

https://docs.python.org/2/library/multiprocessing.html

Convert a loop

def xvyz(x):

this is a regular function,
nothing special

result = etc...

return result

somewhere else in your program:

results = []
This loop takes a long time to
run:

for elem in big list:
results.append(xyz (elem))

= xyz() can be easily parallelized much of the time.
= Waitch for problems:

Printing to the screen - randomly interleaved output to the screen

Writing to a file > Same as the screen issue...don’t parallel write to
the same file!

Memory allocations - if the input & outputs use a lot of memory
maybe limit parallelism to avoid excess memory usage.

—

BOSTON
UNIVERSITY

import multiprocessing as mp
Replace the loop with a Pool and a map

with mp.Pool (processes=nprocs) as pool:

xyz () now runs in parallel over the
elements of big list.

results = pool.map(xyz, big list)

How the Pool.map() Works

def xyz(a):
..code...

———

Pool.map(xyz,values)

4 process pool

-

o

xyz(a,)
xyz(a,)
dg -
p
a xyz(a,)
xyz(az)
3.2 &
p
ds xyz(a,)
— xyz(as)
a. 4 &
a5 xyz(a;)
xyz(a,)
ag '
a7

iterable

BOSTON _
UNIVERSITY (list, tuple, generator, set, etc.)

A function is pickled and sent
to each pool worker.

The collection of data is split
up, pickled, and sent to each
worker.

Each worker unpickles the
function & data, runs the
function on each element of the
collection, pickles the result,
and sends it back.

The main process unpickles
the results and puts them into a
list.

https://docs.python.org/3/library/pickle.html

Example

= Open pool_basics.py / R=1

= This calculates the value of &

BOSTON
UNIVERSITY

multiprocessing.pool.Pool.map() options

= The Pool is the simplest way to add parallelism to Python code.

= Arguments: map (function, iterable, chunksize)

= function: the function to be applied to each element of the iterable

= Iterable: a list, set, generator, dictionary, i.e. something that can be
looped over
= chunksize: “This method chops the iterable into a number of chunks which it submits

to the process pool as separate tasks. The (approximate) size of these chunks can be
specified by setting chunksize to a positive integer.”

BOSTON
UNIVERSITY

-
Your turn to parallelize a problem...

= Open the file my_pool.py
= The problem: count the characters in 1M English words
= You'll implement a Pool to parallelize the solution.

BOSTON
UNIVERSITY

Multiple iterables — Pool.starmap()

def xvyz(a,b):
return a+b

= To pass multiple arguments use ——

Starmap() vals = [(1,2), (3,4)]
with mp.Pool (processes=2) as pool:
sums = pool.starmap(xyz,vals)

2 function calls happen in parallel:

= |f you have 1 object and a list, try £ xyz(1,2)
this to create a list for starmap: t xyz(3,4)
import itertools
a='argl'
b=range (3)

list(zip(b,itertools.repeat(a)))
—=> [(Or 'argl')/

BOSTON ' :
b ranl,

(2, 'argl')]

Pool.imap() and Pool.imap_unordered()

= map() has a disadvantage In that the iterable must be fully in memory
before it can be distributed.

= 1map() is lazier. It will assign chunks of work to each worker and pull them

as needed from the iterable.
= Generators can be used to save RAM in the main process.

= Imap_unordered() is similar but it does not guarantee the output order

matches the input order.
= Good for when computations take a varying amount of time.

BOSTON
UNIVERSITY

def xvyz(a,b):
return a+b

imap()

A generator function
def gen vals(N):
for i in range(N):
yield evens and odds
yield 2 * 1, 2 * 1 + 1

with mp.Pool (processes=2) as pool:
sums = pool.imap(xyz,gen vals(1000),chunksize = 4)

= For pool worker 1, 4 calls to gen_vals() are completed - [(0,1),(2,3),(4,5),(6,7)]

= This list is sent to worker 0.
= Worker O calls xyz(0,1),then xyz(2,3) etc and returns the results in a list to the main Python process.

= Four more calls are done and that list goes to worker 1.
= When worker 0 is completed another 4 calls to gen_vals() are done to create the next chunk, etc.
= The generator gen_vals() never creates all 1000 sets of numbers in memory.

BOSTON
UNIVERSITY

Using map, starmap, imap, imap_unordered

= You have function calls being applied to some iterable (e.g. list of data objects, set of files, sets
of simulation parameters, etc.)

= The function call is computationally expensive — it takes a while to run.
= Each function call is independent of the others.
= Ex. Each input file in a list is read and processed separately.

= Then:

= The multiprocessing.Pool is worth investigating for your code.

= Else:

= Try the multiprocessing.Process code. This can be used to build more sophisticated
parallelization strategies. Or investigate some other libraries...

BOSTON
UNIVERSITY

More complex algorithms

= multiprocessing.Pool applies easily to for-loop
parallelization. What about more complex
patterns?
= Other tools in multiprocessing:
= Start & stop processes that execute functions.
= pipes,queues - send data between processes

= Shared memory - processes access data
without it being copied to them

= locks, semaphores - protect serial-only
resources from parallel access

= Writing to a common file, updating shared
memory, etc.

BOSTON
UNIVERSITY

T (o L N
T S T T |]]:‘5
moz | £ =
O A
e e e T | /

A pipeline where multiple images go
through a series of filters. 2 images get
copied to a separate set of filters. The
output stage aggregates these results.

img_0 Po
)
img_1 é
5
img_2 CJl p—
O
©
. &)
img_3
—
img_4
Create Queue() objects for data transfer (q0...q6) = This can all be accomplished in your
Launch Process() objects to run functions (pO0...p5) Python code with the multiprocessing
= Queues are connected in the Process() call library.
. = How would you scale this to more cores?
Add data to the queues = processing starts = How about fewer?

Wait for data to return from the “output” process = |t's a lot of work.
Shut down processes, destroy queues. = External libraries make this significantly
easier.
EISI)?EESTNY = For extensive tutorials on the many ways to use the multiprocessing

library see: https://superfastpython.com/category/multiprocessing/

https://superfastpython.com/category/multiprocessing/

Parallelization with External Libraries

= When to look outside of standard Python:
Your dataset is greater than the amount of RAM you have available

= You are dealing with large Pandas dataframes, numpy arrays, CSV files, database fetches,
etc.

= You have numpy-centered numeric calculations
= EX. A custom image processing algorithm
= You want to scale past a single compute node
= mp is causing problems due to RAM usage or poor scaling due to its multi-process nature
= You want to implement more complex parallel algorithms

BOSTON
UNIVERSITY

Pandas in Parallel

= Modin
= |Implements ~90% of the Pandas DataFrame API.
= Autoscales Pandas calculations onto available cores.
= Developed by UC Berkeley since 2018

= parallel-pandas
= A simpler auto-parallelizing library for DataFrames.

= Dask DataFrames

= Can autoscale and use available cores.
= Built on top of Pandas.

= “Polars is a lightning fast DataFrame library/in-memory query engine.”
= 2-20x faster than Pandas, for many operations
= Efficiently uses memory and multiple cores

= This is a relatively recent library, developed at RPI in 2020.
= This is not compatible with your existing Pandas code. Using it requires a re-write of your code.

BOSTON
UNIVERSITY

https://modin.readthedocs.io/en/latest/index.html
https://pypi.org/project/parallel-pandas/
https://docs.dask.org/en/stable/dataframe.html
https://www.pola.rs/

-

Dask }

Array
~ Dask

= Dask supports parallelism beyond Pandas. Array

= Dask Array: parallel numpy arrays s
= |ncludes efficient shared-memory access to these arrays

= Dask Bag: parallelize generic functions like map or groupby on large collections

= Example: read a file where each line is a JSON string. Convert to a format that can be be converted to a
DataFrame.

= Dask Delayed: parallelize things that don’t work with the other approaches.
= For example, the image processing graph from a few slides ago.

= RCS is offering a Dask tutorial this summer — see the tutorial schedule.

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/array.html
https://docs.dask.org/en/stable/bag.html
https://docs.dask.org/en/stable/delayed.html

Ray Core "9‘ RAY

= Ray Is a system for scaling up and parallelizing machine learning
applications.

= Ray Core is its underlying distributed, parallel computation system.
= You can use Ray Core to implement a wide variety of parallel patterns.

= They have an example of using Ray to compute « using the same algorithm we used earlier.

= This is very useful if you're interested in concurrent programming
= more generalized parallel programming
= different parts of your program perform tasks in parallel

= Example: your text editor auto-saves your file while running a spelling check while
displaying text as you type.

BOSTON
UNIVERSITY

https://docs.ray.io/en/latest/
https://docs.ray.io/en/latest/ray-core/walkthrough.html
https://docs.ray.io/en/latest/ray-core/patterns/index.html
https://docs.ray.io/en/latest/ray-core/examples/highly_parallel.html

Common Parallel Libraries

numpy Numeric algorithms BLAS/LAPACK or MKL OpenMP or MKL

(C, usually)
cv2 Image processing OpenCV (C++) OpenMP or pthreads
Tensorflow, PyTorch, Machine learning CUDA or OpenCL OpenMP, pthreads,
Jax or GPU threads
numba Compile/accelerate numba C++ libs Intel TBB

Python functions

numexpr Compile numpy code numexpr libs OpenMP
(older, not common)

= Using Python for scientific computing naturally leads to the use of several libraries that
support parallel computation using multiple threads. Those are built on top of a small
set of threading libraries. Lots of other Python libraries use these “behind the scenes”.

Glossary
BLAS: Basic Linear Algebra Subprograms

BOSTON . LAPACK: Linear Algebra Package
UNIVERSITY . MKL: Intel Math Kernel Library

TBB: Intel Thread Building Blocks

N Cores: 1 single Precision

BLAS

80 A

= The Basic Linear Algebra
Subprograms library provides a variety 60 -
of functions for linear algebra type
calculations. 40 -

= This underlies a staggering number of
algorithms and computations including)
much of numpy and scipy. o

= High performance threaded BLAS 000 2000 300 400 5000

libraries continue to be an active area - SCC benchmark.
of computer science research. * Note poor performance of default

Linux system BLAS library!
BOSTON
UNIVERSITY

GFLOPS

blis
mik|
mkl 2019

20

SRR

i

python3/3.10.12 module on SCC

L]
Num BLAS librar Rt
blas_armpl_info:
NOT AVAILABLE
blas _mkl_info:
Anaconda, Windows NOT AVATLABLE
blis_info:
ey 1ibraries = ['blis’, "blis"]
In [4]: np.show_config() library_dirs = ['/share/pkg.8/blis/@8.9.8/install/lib"]
blas_mkl_info: define macros = [('HAVE_CBLAS', None)]
libraries = ['blas', 'cblas', 'lapack’, 'blas', ‘'cblas', 'lapack’'] include_dirs = [‘/share/pkg.8/blis/@.9.8/install/include/blis"]
library_dirs = ['D:\\bld\\numpy_1595523081734_h_env\\Library\\1lib"'] language = c
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] runtime_library_dirs = ['/share/pkg.8/blis/®.9.8/install/1lib"]
include_dirs = ['D:\\bld\\numpy_ 1595523881734_h_env\\Library\\include"'] blas_opt_info:
blasi?gt_1?f0: ['blas”, ‘cblas’, 'l k", 'blas', ‘cblas’, 'l k', 'blas', ‘"cblas’, '1 k"] 1ibraries = ['blis’, "blis']
ibraries = as', ‘cblas®, 'lapack’, as', ‘cblas®, 'lapack’, as', '"cblas', "lapac . : _ : : -
library_dirs = ['D:\\bld\\numpy_1595523081734_h_env\\Library\\1lib"'] i;g;:;yagi:is _[[i?::;Efﬁgﬁﬁthl}?{?i?'aflnStallfllh]
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] . = - = e o - - 1t
include dirs = ['D:\\bld\\numpy 1595523081734\\ h_env\\Library\\include'] include_dirs = ['/share/pkg.8/blis/@.9.8/install/include/blis"]

lapack_mk1l_info: langyage S - : - . .
libraries = ['blas', 'cblas', 'lapack', 'blas’, 'cblas’, 'lapack'] runtime_library_dirs = ['/share/pkg.8/blis/8.9.8/install/lib"]

library_dirs = ['D:\\bld\\numpy_1595523881734_h_env\\Library\\1lib'] lapack_armpl_info:
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] NOT AVAILABLE
include_dirs = ['D:\\bld\\numpy_ 1595523@81734_h_env\\Library\\include"] lapack mkl info:
lapack_opt_info: NOT AVAILABLE
libraries = ['blas', 'cblas', 'lapack', 'blas', ‘cblas', 'lapack', 'blas', 'cblas', 'lapack'] openblas_lapack info:

library_dirs = ['D:\\bld\\numpy_1595523081734_h_env\\Library\\1lib'] NOT AVAILABLE
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] openblas_clapack_info:
include_dirs = ['D:\\bld\\numpy_ 1595523@81734_h_env\\Library\\include"] NOT AVAILABLE

flame_info:
NOT AVAILABLE
accelerate_info:

You can see the exact libraries that Numpy is NOT AVAZLABLE

lapack_info:
1 1 1) 1ibraries = [‘1 k', 1 k']
USIng Wlth the Command The OUtpUt WI” lib:::;ijirs = ???zharez"p:?;/hlis:"a.Q.El-."installflib']
language = 77

depend on the Python InSta”atlon runtime_library _dirs = ["/share/pkg.8/blis/8.9.8/install/lib"]

extra_link_args = ['-L/share/pkg.8/blis/8.9.8/install/1ib", "-llapack’]
; lapack_opt_info:
numpy ¢ Show_conflg () i liErsr‘Ees = ['lapack’, 'lapack’, 'blis', 'blis']
library_dirs = ['/share/pkg.8/blis/@.9.8/install/lib"]
language = ¢
runtime_library dirs = ['/share/pkg.8/blis/@.9.8/install/lib"]
extra_link _args = ['-L/share/pkg.8/blis/8.9.08/install/1lib’, "-llapack’]
define_macros = [('HAVE_CBLAS', None), ('NO_ATLAS INFO', 1)]
include_dirs = ['/share/pkg.8/blis/@.9.8/install/include/blis’
BOSTON Supported SIMD Exter[15i|:|ns inptEis MumPy install: :
UNIVERSITY baseline = S5E,55E2,55E3,555E3,55E41, POPCNT,S5E42, AV
found = F1B6C,FMA3,AVX2,AVXS12F,AVX5120D,AVX512 SKX,AVX512 CLX
not found = AVX512 CNL,AVX512 ICL

N
Enabling Threaded Libraries on the SCC

= Many libraries on the SCC that use multiple cores are built on the
OpenMP or MKL threading libraries.

= The SCC disables this threading by default when you load Python or

miniconda modules by setting environment variables.

= Why? Because most jobs are single-threaded, and automatic threading leads to jobs using
more cores than they should...and then the jobs are killed by the process reaper.

= |n a compute job or at the command line you can enable these threads
and they will automatically be used.

BOSTON
UNIVERSITY

Threading Environment Variables on the SCC

Threading Library

OMP_NUM_THREADS OpenMP, MKL, numexpr
MKL_NUM_THREADS MKL

NUMBA NUM_THREADS numba
NUMEXPR_NUM THREADS numexpr

= Setting these variables to a value >1 will enable automatic threading for code that
uses the matching threading library.

= These should be set before running Python.

= Some libraries have their own internal mechanism can be used in place of the
variable.

= OpenCV example: cv2.setNumThreads (integer val)

EI\CTI){?‘EESTNY On Macs with the Accelerate library use VECLIB_MAXIMUM_THREADS in addition to
OMP_NUM_THREADS

Enable OpenMP ThreadinginaJob ...

#!/bin/bash -1
= Request a multi-core job: # Ask for 4 cores.
#S -pe omp 4
= qrsh -peomp 4
module load python3/3.10.5
= SCC jobs automatically set the variable
NSLOTS to the number of requested cores.

This sets the number of
allowed threads to 4.
export OMP NUM THREADS=
= Environment variables can be set in various |
i) _ # Run your Python script, as
ways on different operating systems. Here is a } this uses a lot of numpy code

quide for Windows, Linux, and Mac OSX. # and might benefit from threads:
python myscript.py

#....did it run faster?

BOSTON
UNIVERSITY

https://www.schrodinger.com/kb/1842

numba

= numba: auto-compiler for Python code.
= Can compile code for GPU execution.

= Supports auto-parallelization. Their prange
function creates a parallelized loop.

= This lets you do low-level threading via Python.

= Thread control variable:
NUMBA NUM THREADS

BOSTON
UNIVERSITY

Numba can also compile Python code so
it is callable from C or C++.

Read the User Manual and the
Reference Manual

Check out the assortment of environment
variables that can be set to influence
Numba behavior.

https://numba.pydata.org/
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/index.html
https://numba.pydata.org/numba-doc/dev/reference/index.html
https://numba.readthedocs.io/en/stable/reference/envvars.html
https://numba.readthedocs.io/en/stable/reference/envvars.html

.njit(parallel=True, fastmath=True)

numba usage def numba jit loop(mat):

rows,cols = mat.shape
for i in numba.prange(rows) :

= Use the decorators for 5 in numbaprangel(cols):
.. . mat[i,3] = 2.0 * mat[i,]] - 1.
@numba.jit or @numba.njit return mat

= There are 2 modes:

= object: Python types are used.
numba must call out to Python)
to retrieve values. = @numba.njit

= nopython — no Python types = These force nopython mode.
are used, numba accesses
values directly. = fastmath=True: allows the
= This is faster. Try to do this. compiler to use special CPU

Instructions.
UNIVERSITY

open numba_par.py

= @numba.jit(nopython=True)

numba Usage Let’s calculate = with Python and numba

= |n general, use numpy ndarrays and 14
functions with numba for the best /
performance.

= Avoid calls to Python functions and sub-libraries \ /

= numba’d functions should only call other
numba’d functions

= This is a large library — test, profile, read the Open numba_pi.py
docs! R

BOSTON
UNIVERSITY

When is this useful?

= |f your Python code heavily uses numpy data structures then it may
benefit from automatic threading or compilation from numba.

= numba has been implementing a growing number of Python data types,
see their docs for the latest.

= Read the Numba docs.
= Numba is under continuous rapid development - new features appear all the time.

= Experiment! more threads is not always better.

= The overhead of launching threads and distributing work can easily exceed the parallel
execution speedup for small problems.

BOSTON
UNIVERSITY

https://numba.pydata.org/numba-doc/dev/reference/pysupported.html#built-in-types

End-of-course Evaluation Form

= Please visit this page and fill in the evaluation form for this course.

= Your feedback is highly valuable to the RCS team for the improvement
and development of tutorials.

= |f you visit this link later please make sure to select the correct tutorial —
name, time, and location.

http://scv.bu.edu/survey/tutorial _evaluation.html

BOSTON
UNIVERSITY

http://scv.bu.edu/survey/tutorial_evaluation.html

	Slide 1: Python Parallelization
	Slide 2: Start Spyder
	Slide 3: Introduction
	Slide 4: Limits on Program Speed
	Slide 5: Types of Parallelization
	Slide 6: Performance Considerations
	Slide 7: Amdahl’s Law
	Slide 8: A word of caution
	Slide 9: How many cores should Python use?
	Slide 10: Let’s Try!
	Slide 11: Logical, Physical, and Efficiency Cores
	Slide 12: Python Language Parallelism
	Slide 13: The Global Interpreter Lock
	Slide 14: Python Threading
	Slide 15: Python Multiprocessing
	Slide 16: Convert a loop
	Slide 17: How the Pool.map() Works
	Slide 18: Example
	Slide 19: multiprocessing.pool.Pool.map() options
	Slide 20: Your turn to parallelize a problem…
	Slide 21: Multiple iterables – Pool.starmap()
	Slide 22: Pool.imap() and Pool.imap_unordered()
	Slide 23: imap()
	Slide 24: Using map, starmap, imap, imap_unordered
	Slide 25: More complex algorithms
	Slide 26
	Slide 27: Parallelization with External Libraries
	Slide 28: Pandas in Parallel
	Slide 29: Dask
	Slide 30: Ray Core
	Slide 31: Common Parallel Libraries
	Slide 32: BLAS
	Slide 33: Numpy BLAS library
	Slide 34: Enabling Threaded Libraries on the SCC
	Slide 35: Threading Environment Variables on the SCC
	Slide 36: Enable OpenMP Threading in a Job
	Slide 37: numba
	Slide 38: numba usage
	Slide 39: numba usage
	Slide 40: When is this useful?
	Slide 41: End-of-course Evaluation Form

