
Python Parallelization

Summer 2025

Research Computing Services

IS & T

Download files:

https://scv.bu.edu/examples/python/tutorials/PythonPar/

Start Spyder

▪ Your own computer:

▪ Start Anaconda Navigator

▪ Find Spyder and launch it.

▪ On SCC OnDemand:

▪ Under Interactive Apps choose

Spyder.

▪ Load python3/3.12.4 and select 4

cores, then click the Launch button.

Introduction

▪ Many programs can perform simultaneous operations, given multiple

processors to perform the work.

▪ Generally speaking, the burden of managing this lies on the programmer.

▪ In this tutorial we’ll go over a variety of ways to achieve parallelism in

Python code.

Limits on Program Speed

▪ Input/Output (I/O): The rate at which data can be read from a disk, a

network file server, a remote server, a sensor, a user’s physical inputs,

etc. limits the performance of the program.

▪ Memory: The quantity of memory on the system limits performance.

▪ CPU (or compute): The speed of the processor is the limit on

performance.
▪ This is most commonly the case for scientific computing.

Types of Parallelization

▪ On the SCC: queue parallelization.
▪ You have N files to process. Submit N jobs.

▪ Or, one job array that launches N jobs.

▪ This often requires little to no changes to your code…

▪ Multiple Processes
▪ Your program launches several copies of itself (or other programs) to solve the computational

problem.

▪ Multiple Threads
▪ Your program creates threads, which are parts of the same program that can execute

independently of each other.

▪ Parallel Libraries
▪ Use a library that internally implements some kind of parallelization.

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array

Performance Considerations

▪ Not every part of a program can benefit from parallelization.

▪ Some parts of program are inherently serial.

▪ Even for a function that can be done in parallel…
▪ Is it worth the programming effort?

▪ Is it worth the reduction in readability and ability to debug?

▪ Does the function use up enough program time to make parallel computation worth the

overhead?

▪ Parallelization is a form of optimization. Profile your code.
▪ For more on profiling – see our Python Optimization tutorial.

Amdahl’s Law

▪ The speedup ratio S is the

ratio of time between the

serial code (T1) and the time

when using N workers (TN):

𝑆 =
𝑇1
𝑇𝑁

=
𝑇1

𝑓 +
1 − 𝑓
𝑁

𝑇1

N = number of threads or

processes

f = fraction of program that

is serial

▪ This is the theoretical best speedup

achievable with parallelization.

Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing

A word of caution

▪ When using the Python

multiprocessing library, always

use the “if __name__”

convention in your main script:

▪ This will make your script work

in interactive Python like

Spyder.

import multiprocessing

...

python script here with functions

defined

...

def script_function():

do python stuff here

with multiprocessing.Pool(4) as p:

code block etc ...

if __name__ == '__main__':

script_function()

▪ It is required on Windows

even in Jupyter notebooks.

How many cores should Python use?

▪ The example file get_n_cores.py provides a function that

checks how many cores have been assigned to an SCC job.
▪ Based on the common Python library psutil

▪ It will also work on your own computers and will choose the

number of installed cores.

▪ Feel free to use this in your own code.

Let’s Try!

▪ In Spyder, open the file lin_alg.py

▪ The computation: a linear algebra

matrix-matrix multiplication.

▪ Completely CPU-bound, scales well

to multiple threads.

▪ How does your computation scale

with the number of threads?

▪ It plots the speedup ratio. What

did you expect? What if you

change the size of the matrices?

Logical, Physical, and Efficiency Cores

▪ Intel Core i7-1165G7

▪ 4 real cores, 4 logical cores
▪ Macbook Pro (from 2021)

▪ Apple M1 Pro CPU

▪ 6 performance cores, 2 efficiency

▪ About This Mac → More Info → System

Report

▪ get_n_cores() → reports 8 cores

The Python psutil library can’t yet

auto-detect efficiency cores. It will

report them as physical cores.

Logical cores provide no benefit

for compute-bound problems

Efficiency cores used last

by the OS. Avoid these!

https://github.com/giampaolo/psutil/issues/2034

Python Language Parallelism

▪ Python provides a number of ways to perform parallel (aka concurrent)

computations.

▪ Read the official docs.

Library Common Usage

threading and

asyncio

I/O-bound programs. Example: web server, network service

multiprocessing CPU-bound parallel execution.

concurrent.futures Modern-style wrapper on top of threading & multiprocessing. Useful for GUIs or

porting code to Python that uses this approach.

subprocess Launching external processes.

https://docs.python.org/3/library/concurrency.html

The Global Interpreter Lock

▪ The GIL limits the amount of multi-threading in the Python interpreter.
▪ Originally introduced as part of Python’s memory management system.

▪ For more details, see this explanation.

▪ Pure Python code runs in one thread only.
▪ This is unlike languages like Java, C#, C++, Fortran, Matlab, or R where threads are easily

used by the programmer.

▪ Multi-threaded code in Python is mostly implemented in external libraries.

https://realpython.com/python-gil/

Python Threading

▪ The Python threading library allows for multiple threads to be created.

▪ Only 1 can actually execute at a time: do not use this for CPU-bound problems.

▪ This works well for I/O-bound problems.

▪ Each thread runs as soon as it has received data

▪ Most of the threads are waiting for data from the disk, the network, the user, etc.

▪ Application examples: Python web servers, file servers, network service, calling a web server API…

https://docs.python.org/3/library/concurrency.html

Python Multiprocessing

▪ For CPU-bound problems multiple Python

processes can be launched to do computations in

parallel.
▪ If you just want to parallelize a for loop, start here.

▪ The multiprocessing library handles inter-process

communication automatically.

▪ Most convenient interface: the Pool, which

provides a set of Python processes that divide

work between them.

https://docs.python.org/2/library/multiprocessing.html

Convert a loop

▪ xyz() can be easily parallelized much of the time.

▪ Watch for problems:

▪ Printing to the screen → randomly interleaved output to the screen

▪ Writing to a file → Same as the screen issue…don’t parallel write to

the same file!

▪ Memory allocations → if the input & outputs use a lot of memory

maybe limit parallelism to avoid excess memory usage.

def xyz(x):

''' here we do something that takes

some time OR gets called a lot

of times '''

this is a regular function,

nothing special

result = etc...

return result

somewhere else in your program:

results = []

This loop takes a long time to

run:

for elem in big_list:

results.append(xyz(elem))

import multiprocessing as mp

Replace the loop with a Pool and a map

with mp.Pool(processes=nprocs) as pool:

results = pool.map(xyz, big_list)

xyz() now runs in parallel over the

elements of big_list.

How the Pool.map() Works
▪ A function is pickled and sent

to each pool worker.

▪ The collection of data is split

up, pickled, and sent to each

worker.

▪ Each worker unpickles the

function & data, runs the

function on each element of the

collection, pickles the result,

and sends it back.

▪ The main process unpickles

the results and puts them into a

list.

Pool.map(xyz,values)

xyz(a0)

xyz(a1)

xyz(a2)

xyz(a3)

xyz(a4)

xyz(a5)

xyz(a6)

xyz(a7)

4 process pooldef xyz(a):

 …code…

a0

a1

a2

a3

a4

a5

a6

a7

iterable

(list, tuple, generator, set, etc.)

https://docs.python.org/3/library/pickle.html

Example

▪ Open pool_basics.py

▪ This calculates the value of 

R=1

multiprocessing.pool.Pool.map() options

▪ The Pool is the simplest way to add parallelism to Python code.

▪ Arguments: map(function, iterable, chunksize)

▪ function: the function to be applied to each element of the iterable

▪ iterable: a list, set, generator, dictionary, i.e. something that can be

looped over

▪ chunksize: “This method chops the iterable into a number of chunks which it submits

to the process pool as separate tasks. The (approximate) size of these chunks can be

specified by setting chunksize to a positive integer.”

Your turn to parallelize a problem…

▪ Open the file my_pool.py
▪ The problem: count the characters in 1M English words

▪ You’ll implement a Pool to parallelize the solution.

Multiple iterables – Pool.starmap()

▪ To pass multiple arguments use

starmap()

▪ If you have 1 object and a list, try

this to create a list for starmap:

def xyz(a,b):

return a+b

vals = [(1,2), (3,4)]

with mp.Pool(processes=2) as pool:

sums = pool.starmap(xyz,vals)

2 function calls happen in parallel:

xyz(1,2)

xyz(3,4)

import itertools

a='arg1'

b=range(3)

list(zip(b,itertools.repeat(a)))

--> [(0, 'arg1'),

(1, 'arg1'),

(2, 'arg1')]

Pool.imap() and Pool.imap_unordered()

▪ map() has a disadvantage in that the iterable must be fully in memory

before it can be distributed.

▪ imap() is lazier. It will assign chunks of work to each worker and pull them

as needed from the iterable.
▪ Generators can be used to save RAM in the main process.

▪ imap_unordered() is similar but it does not guarantee the output order

matches the input order.
▪ Good for when computations take a varying amount of time.

imap()

▪ For pool worker 1, 4 calls to gen_vals() are completed → [(0,1),(2,3),(4,5),(6,7)]

▪ This list is sent to worker 0.
▪ Worker 0 calls xyz(0,1),then xyz(2,3) etc and returns the results in a list to the main Python process.

▪ Four more calls are done and that list goes to worker 1.

▪ When worker 0 is completed another 4 calls to gen_vals() are done to create the next chunk, etc.

▪ The generator gen_vals() never creates all 1000 sets of numbers in memory.

def xyz(a,b):

return a+b

A generator function

def gen_vals(N):

for i in range(N):

yield evens and odds

yield 2 * i, 2 * i + 1

with mp.Pool(processes=2) as pool:

sums = pool.imap(xyz,gen_vals(1000),chunksize = 4)

Using map, starmap, imap, imap_unordered

▪ If:
▪ You have function calls being applied to some iterable (e.g. list of data objects, set of files, sets

of simulation parameters, etc.)

▪ The function call is computationally expensive – it takes a while to run.

▪ Each function call is independent of the others.

▪ Ex. Each input file in a list is read and processed separately.

▪ Then:
▪ The multiprocessing.Pool is worth investigating for your code.

▪ Else:
▪ Try the multiprocessing.Process code. This can be used to build more sophisticated

parallelization strategies. Or investigate some other libraries…

More complex algorithms

▪ multiprocessing.Pool applies easily to for-loop

parallelization. What about more complex

patterns?

▪ Other tools in multiprocessing:

▪ Start & stop processes that execute functions.

▪ pipes,queues → send data between processes

▪ Shared memory → processes access data

without it being copied to them

▪ locks, semaphores → protect serial-only

resources from parallel access

▪ Writing to a common file, updating shared

memory, etc.

img_0

img_1

img_4

img_2

img_3

o
u

tp
u

t

A pipeline where multiple images go

through a series of filters. 2 images get

copied to a separate set of filters. The

output stage aggregates these results.

▪ Create Queue() objects for data transfer (q0…q6)

▪ Launch Process() objects to run functions (p0…p5)

▪ Queues are connected in the Process() call

▪ Add data to the queues → processing starts

▪ Wait for data to return from the “output” process

▪ Shut down processes, destroy queues.

img_0

img_1

img_4

img_2

img_3

c
a
lc

_
o

u
tp

u
t

q1

q2

q3

q4

q5

p1

p2

p3

p4

p5

p0q0

q6

p0

▪ This can all be accomplished in your

Python code with the multiprocessing

library.
▪ How would you scale this to more cores?

▪ How about fewer?

▪ It’s a lot of work.

▪ External libraries make this significantly

easier.

▪ For extensive tutorials on the many ways to use the multiprocessing

library see: https://superfastpython.com/category/multiprocessing/

https://superfastpython.com/category/multiprocessing/

Parallelization with External Libraries

▪ When to look outside of standard Python:
▪ Your dataset is greater than the amount of RAM you have available

▪ You are dealing with large Pandas dataframes, numpy arrays, CSV files, database fetches,

etc.

▪ You have numpy-centered numeric calculations

▪ Ex. A custom image processing algorithm

▪ You want to scale past a single compute node

▪ mp is causing problems due to RAM usage or poor scaling due to its multi-process nature

▪ You want to implement more complex parallel algorithms

Pandas in Parallel

▪ Modin
▪ Implements ~90% of the Pandas DataFrame API.

▪ Autoscales Pandas calculations onto available cores.

▪ Developed by UC Berkeley since 2018

▪ parallel-pandas
▪ A simpler auto-parallelizing library for DataFrames.

▪ Dask DataFrames
▪ Can autoscale and use available cores.

▪ Built on top of Pandas.

▪ “Polars is a lightning fast DataFrame library/in-memory query engine.”
▪ 2-20x faster than Pandas, for many operations

▪ Efficiently uses memory and multiple cores

▪ This is a relatively recent library, developed at RPI in 2020.

▪ This is not compatible with your existing Pandas code. Using it requires a re-write of your code.

https://modin.readthedocs.io/en/latest/index.html
https://pypi.org/project/parallel-pandas/
https://docs.dask.org/en/stable/dataframe.html
https://www.pola.rs/

Dask

▪ Dask supports parallelism beyond Pandas.

▪ Dask Array: parallel numpy arrays

▪ Includes efficient shared-memory access to these arrays

▪ Dask Bag: parallelize generic functions like map or groupby on large collections

▪ Example: read a file where each line is a JSON string. Convert to a format that can be be converted to a

DataFrame.

▪ Dask Delayed: parallelize things that don’t work with the other approaches.

▪ For example, the image processing graph from a few slides ago.

▪ RCS is offering a Dask tutorial this summer – see the tutorial schedule.

https://docs.dask.org/en/stable/array.html
https://docs.dask.org/en/stable/bag.html
https://docs.dask.org/en/stable/delayed.html

Ray Core

▪ Ray is a system for scaling up and parallelizing machine learning

applications.

▪ Ray Core is its underlying distributed, parallel computation system.
▪ You can use Ray Core to implement a wide variety of parallel patterns.

▪ They have an example of using Ray to compute  using the same algorithm we used earlier.

▪ This is very useful if you’re interested in concurrent programming

▪ more generalized parallel programming

▪ different parts of your program perform tasks in parallel

▪ Example: your text editor auto-saves your file while running a spelling check while

displaying text as you type.

https://docs.ray.io/en/latest/
https://docs.ray.io/en/latest/ray-core/walkthrough.html
https://docs.ray.io/en/latest/ray-core/patterns/index.html
https://docs.ray.io/en/latest/ray-core/examples/highly_parallel.html

Common Parallel Libraries

▪ Using Python for scientific computing naturally leads to the use of several libraries that

support parallel computation using multiple threads. Those are built on top of a small

set of threading libraries. Lots of other Python libraries use these “behind the scenes”.

Python Library Application Underlying Library Threading Lib.

numpy Numeric algorithms BLAS/LAPACK or MKL

(C, usually)

OpenMP or MKL

cv2 Image processing OpenCV (C++) OpenMP or pthreads

Tensorflow, PyTorch,

Jax

Machine learning CUDA or OpenCL OpenMP, pthreads,

or GPU threads

numba Compile/accelerate

Python functions

numba C++ libs Intel TBB

numexpr Compile numpy code

(older, not common)

numexpr libs OpenMP

▪ Glossary

▪ BLAS: Basic Linear Algebra Subprograms

▪ LAPACK: Linear Algebra Package

▪ MKL: Intel Math Kernel Library

▪ TBB: Intel Thread Building Blocks

BLAS

▪ The Basic Linear Algebra

Subprograms library provides a variety

of functions for linear algebra type

calculations.

▪ This underlies a staggering number of

algorithms and computations including

much of numpy and scipy.

▪ High performance threaded BLAS

libraries continue to be an active area

of computer science research.
▪ SCC benchmark.

▪ Note poor performance of default

Linux system BLAS library!

Numpy BLAS library

▪ You can see the exact libraries that Numpy is

using with the command. The output will

depend on the Python installation:

numpy.show_config()

Anaconda, Windows

python3/3.10.12 module on SCC

Enabling Threaded Libraries on the SCC

▪ Many libraries on the SCC that use multiple cores are built on the

OpenMP or MKL threading libraries.

▪ The SCC disables this threading by default when you load Python or

miniconda modules by setting environment variables.
▪ Why? Because most jobs are single-threaded, and automatic threading leads to jobs using

more cores than they should…and then the jobs are killed by the process reaper.

▪ In a compute job or at the command line you can enable these threads

and they will automatically be used.

Threading Environment Variables on the SCC

▪ Setting these variables to a value >1 will enable automatic threading for code that

uses the matching threading library.

▪ These should be set before running Python.

▪ Some libraries have their own internal mechanism can be used in place of the

variable.

▪ OpenCV example: cv2.setNumThreads(integer_val)

Variable Threading Library

OMP_NUM_THREADS OpenMP, MKL, numexpr

MKL_NUM_THREADS MKL

NUMBA_NUM_THREADS numba

NUMEXPR_NUM_THREADS numexpr

On Macs with the Accelerate library use VECLIB_MAXIMUM_THREADS in addition to

OMP_NUM_THREADS

Enable OpenMP Threading in a Job

▪ Request a multi-core job:

▪ qrsh -pe omp 4

▪ SCC jobs automatically set the variable

NSLOTS to the number of requested cores.

▪ Environment variables can be set in various

ways on different operating systems. Here is a

guide for Windows, Linux, and Mac OSX.

#!/bin/bash -l

Ask for 4 cores.

#$ -pe omp 4

module load python3/3.10.5

This sets the number of

allowed threads to 4.

export OMP_NUM_THREADS=$NSLOTS

Run your Python script, as

this uses a lot of numpy code

and might benefit from threads:

python myscript.py

#....did it run faster?

Example qsub script:

https://www.schrodinger.com/kb/1842

numba

▪ numba: auto-compiler for Python code.

▪ Can compile code for GPU execution.

▪ Supports auto-parallelization. Their prange

function creates a parallelized loop.

▪ This lets you do low-level threading via Python.

▪ Numba can also compile Python code so

it is callable from C or C++.

▪ Read the User Manual and the

Reference Manual

▪ Check out the assortment of environment

variables that can be set to influence

Numba behavior.

▪ Thread control variable:

 NUMBA_NUM_THREADS

https://numba.pydata.org/
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/index.html
https://numba.pydata.org/numba-doc/dev/reference/index.html
https://numba.readthedocs.io/en/stable/reference/envvars.html
https://numba.readthedocs.io/en/stable/reference/envvars.html

numba usage

▪ Use the decorators

@numba.jit or @numba.njit

▪ There are 2 modes:

▪ object: Python types are used.

numba must call out to Python

to retrieve values.

▪ nopython – no Python types

are used, numba accesses

values directly.

▪ This is faster. Try to do this.

▪ @numba.jit(nopython=True)

▪ @numba.njit

▪ These force nopython mode.

▪ fastmath=True: allows the

compiler to use special CPU

instructions.

@numba.njit(parallel=True, fastmath=True)

def numba_jit_loop(mat):

''' A parallel double for loop over

a 2D numpy ndarray '''

rows,cols = mat.shape

for i in numba.prange(rows):

for j in numba.prange(cols):

mat[i,j] = 2.0 * mat[i,j] - 1.0

return mat

open numba_par.py

numba usage

▪ In general, use numpy ndarrays and

functions with numba for the best

performance.

▪ Avoid calls to Python functions and sub-libraries

▪ numba’d functions should only call other

numba’d functions

▪ This is a large library – test, profile, read the

docs!

R=1

Let’s calculate  with Python and numba

Open numba_pi.py

When is this useful?

▪ If your Python code heavily uses numpy data structures then it may

benefit from automatic threading or compilation from numba.

▪ numba has been implementing a growing number of Python data types,

see their docs for the latest.

▪ Read the Numba docs.
▪ Numba is under continuous rapid development - new features appear all the time.

▪ Experiment! more threads is not always better.
▪ The overhead of launching threads and distributing work can easily exceed the parallel

execution speedup for small problems.

https://numba.pydata.org/numba-doc/dev/reference/pysupported.html#built-in-types

End-of-course Evaluation Form

▪ Please visit this page and fill in the evaluation form for this course.

▪ Your feedback is highly valuable to the RCS team for the improvement

and development of tutorials.

▪ If you visit this link later please make sure to select the correct tutorial –

name, time, and location.

http://scv.bu.edu/survey/tutorial_evaluation.html

http://scv.bu.edu/survey/tutorial_evaluation.html

	Slide 1: Python Parallelization
	Slide 2: Start Spyder
	Slide 3: Introduction
	Slide 4: Limits on Program Speed
	Slide 5: Types of Parallelization
	Slide 6: Performance Considerations
	Slide 7: Amdahl’s Law
	Slide 8: A word of caution
	Slide 9: How many cores should Python use?
	Slide 10: Let’s Try!
	Slide 11: Logical, Physical, and Efficiency Cores
	Slide 12: Python Language Parallelism
	Slide 13: The Global Interpreter Lock
	Slide 14: Python Threading
	Slide 15: Python Multiprocessing
	Slide 16: Convert a loop
	Slide 17: How the Pool.map() Works
	Slide 18: Example
	Slide 19: multiprocessing.pool.Pool.map() options
	Slide 20: Your turn to parallelize a problem…
	Slide 21: Multiple iterables – Pool.starmap()
	Slide 22: Pool.imap() and Pool.imap_unordered()
	Slide 23: imap()
	Slide 24: Using map, starmap, imap, imap_unordered
	Slide 25: More complex algorithms
	Slide 26
	Slide 27: Parallelization with External Libraries
	Slide 28: Pandas in Parallel
	Slide 29: Dask
	Slide 30: Ray Core
	Slide 31: Common Parallel Libraries
	Slide 32: BLAS
	Slide 33: Numpy BLAS library
	Slide 34: Enabling Threaded Libraries on the SCC
	Slide 35: Threading Environment Variables on the SCC
	Slide 36: Enable OpenMP Threading in a Job
	Slide 37: numba
	Slide 38: numba usage
	Slide 39: numba usage
	Slide 40: When is this useful?
	Slide 41: End-of-course Evaluation Form

