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Start Spyder

= Your own computer: = On SCC OnDemand:
= Start Anaconda Navigator = Under Interactive Apps choose
= Find Spyder and launch it. Spyder.

= Load python3/3.12.4 and select 4
- cores, then click the Launch button.
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Introduction

= Many programs can perform simultaneous operations, given multiple
processors to perform the work.

= Generally speaking, the burden of managing this lies on the programmer.

= |n this tutorial we’ll go over a variety of ways to achieve parallelism in
Python code.
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Limits on Program Speed

= |[nput/Output (I/O): The rate at which data can be read from a disk, a
network file server, a remote server, a sensor, a user’s physical inputs,
etc. limits the performance of the program.

= Memory: The guantity of memory on the system limits performance.

= CPU (or compute): The speed of the processor is the limit on

performance.
= This is most commonly the case for scientific computing.
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Types of Parallelization

= On the SCC: queue parallelization.
= You have N files to process. Submit N jobs.
= QOr, one |ob array that launches N jobs.
= This often requires little to no changes to your code...

= Multiple Processes

= Your program launches several copies of itself (or other programs) to solve the computational
problem.

= Multiple Threads

= Your program creates threads, which are parts of the same program that can execute
iIndependently of each other.

= Parallel Libraries
= Use a library that internally implements some kind of parallelization.
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https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array

Performance Considerations

= Not every part of a program can benefit from parallelization.
= Some parts of program are inherently serial.

= Even for a function that can be done in parallel...

= |s it worth the programming effort?
= |s it worth the reduction in readability and ability to debug?

= Does the function use up enough program time to make parallel computation worth the
overhead?

= Parallelization is a form of optimization. Profile your code.
= For more on profiling — see our Python Optimization tutorial.
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Amdahl’s Law
Amdahl’'s Law o P
// Parallel Portion
16.00 7 50%
/ ——75%
14.00 / —90%
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= The speedup ratio S is the _ 1200 /
ratio of time between the § 1000 o=
. : . /1A
serial code (T,) and the time ]
when using N workers (T,): - Y
o AT |
S — Number of Processors -
(e )m
= This is the theoretical best speedup
achievable with parallelization.
N = number of threads or
processes Figure from Wikipedia.
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https://en.wikipedia.org/wiki/Parallel_computing

A word of caution

= When using the Python
multiprocessing library, always
use the “if __name ”

convention in your main script:\

= This will make your script work
In interactive Python like
Spyder.
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import multiprocessing

i

# python script here with functions

# defined

i

def script function():

i

with multiprocessing.Pool(4) as p:

do python stuff here

# code block etc

7

if

name == ' main ':

script_funggion()

= |tisrequired on Windows
even in Jupyter notebooks.




How many cores should Python use?

= The example file get_n_cores.py provides a function that
checks how many cores have been assigned to an SCC job.
= Based on the common Python library psutil

= |t will also work on your own computers and will choose the
number of installed cores.

= Feel free to use this in your own code.
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Let's Try!

= |n Spyder, open the file lin_alg.py = How does your computation scale
with the number of threads?

= The computation: a linear algebra

matrix-matrix multiplication. = |t plots the speedup ratio. What
= Completely CPU-bound, scales well did you expect? What if you
to multiple threads. change the size of the matrices?
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Logical, Physical, and Efficiency Cores

Speedup Ratio. Matrix size 4000

¥
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; Logical cores provide no benefit
15 - for compute-bound problems
10 A
1 2 3 4 5 B 7 B
M Cores

Intel Core i7-1165G7
= 4 real cores, 4 logical cores
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The Python psutil library can'’t yet
auto-detect efficiency cores. It will
report them as physical cores.

Speedup Ratio. Matrx size 3000

Efficiency cores used last
by the OS. Avoid these!

2 3 4 5 G 7 B
M Cores

Macbook Pro (from 2021)

= Apple M1 Pro CPU

= 6 performance cores, 2 efficiency
= About This Mac - More Info - System
Report

= get _n_cores() = reports 8 cores


https://github.com/giampaolo/psutil/issues/2034

Python Language Parallelism

= Python provides a number of ways to perform parallel (aka concurrent)
computations.

= Read the official docs.

threading and I/O-bound programs. Example: web server, network service
asyncio
multiprocessing CPU-bound parallel execution.

concurrent.futures  Modern-style wrapper on top of threading & multiprocessing. Useful for GUIs or
porting code to Python that uses this approach.

subprocess Launching external processes.
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https://docs.python.org/3/library/concurrency.html

The Global Interpreter Lock

= The GIL limits the amount of multi-threading in the Python interpreter.
= Qriginally introduced as part of Python’s memory management system.
= For more detalls, see this explanation.

= Pure Python code runs in one thread only.

= This is unlike languages like Java, C#, C++, Fortran, Matlab, or R where threads are easily
used by the programmer.

= Multi-threaded code in Python is mostly implemented in external libraries.
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https://realpython.com/python-gil/

Python Threading

= The Python threading library allows for multiple threads to be created.
= Only 1 can actually execute at a time: do not use this for CPU-bound problems.
= This works well for I/O-bound problems.

= Each thread runs as soon as it has received data
= Most of the threads are waiting for data from the disk, the network, the user, etc.
= Application examples: Python web servers, file servers, network service, calling a web server API...
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https://docs.python.org/3/library/concurrency.html

Python Multiprocessing

= For CPU-bound problems multiple Python
processes can be launched to do computations in

parallel.
= |f you just want to parallelize a for loop, start here.

= The multiprocessing library handles inter-process
communication automatically.

= Most convenient interface: the Pool, which
provides a set of Python processes that divide
work between them.
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https://docs.python.org/2/library/multiprocessing.html

Convert a loop

def xvyz(x):

# this is a regular function,
# nothing special

result = etc...

return result

# somewhere else in your program:

results = []
# This loop takes a long time to
# run:

for elem in big list:
results.append(xyz (elem))

= xyz() can be easily parallelized much of the time.
= Waitch for problems:

Printing to the screen - randomly interleaved output to the screen

Writing to a file > Same as the screen issue...don’t parallel write to
the same file!

Memory allocations - if the input & outputs use a lot of memory
maybe limit parallelism to avoid excess memory usage.

—
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import multiprocessing as mp
# Replace the loop with a Pool and a map

with mp.Pool (processes=nprocs) as pool:

# xyz () now runs in parallel over the
# elements of big list.

results = pool.map(xyz, big list)




How the Pool.map() Works

def xyz(a):
..code...

———

Pool.map(xyz,values)

4 process pool

-

o

xyz(a,)
xyz(a,)
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iterable

BOSTON _
UNIVERSITY (list, tuple, generator, set, etc.)

A function is pickled and sent
to each pool worker.

The collection of data is split
up, pickled, and sent to each
worker.

Each worker unpickles the
function & data, runs the
function on each element of the
collection, pickles the result,
and sends it back.

The main process unpickles
the results and puts them into a
list.


https://docs.python.org/3/library/pickle.html

Example

= Open pool_basics.py / R=1

= This calculates the value of &
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multiprocessing.pool.Pool.map() options

= The Pool is the simplest way to add parallelism to Python code.

= Arguments: map (function, iterable, chunksize)

= function: the function to be applied to each element of the iterable

= Iterable: a list, set, generator, dictionary, i.e. something that can be
looped over
= chunksize: “This method chops the iterable into a number of chunks which it submits

to the process pool as separate tasks. The (approximate) size of these chunks can be
specified by setting chunksize to a positive integer.”
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Your turn to parallelize a problem...

= Open the file my_pool.py
= The problem: count the characters in 1M English words
= You'll implement a Pool to parallelize the solution.
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UNIVERSITY



Multiple iterables — Pool.starmap()

def xvyz(a,b):
return a+b

= To pass multiple arguments use ——

Starmap() vals = [(1,2), (3,4)]
with mp.Pool (processes=2) as pool:
sums = pool.starmap(xyz,vals)

# 2 function calls happen in parallel:

= |f you have 1 object and a list, try £ xyz(1,2)
this to create a list for starmap: t xyz(3,4)
import itertools
a='argl'
b=range (3)

list(zip(b,itertools.repeat(a)))
# —=> [(Or 'argl')/

BOSTON ' :
b ranl,

# (2, 'argl')]



Pool.imap() and Pool.imap_unordered()

= map() has a disadvantage In that the iterable must be fully in memory
before it can be distributed.

= 1map() is lazier. It will assign chunks of work to each worker and pull them

as needed from the iterable.
= Generators can be used to save RAM in the main process.

= Imap_unordered() is similar but it does not guarantee the output order

matches the input order.
= Good for when computations take a varying amount of time.
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def xvyz(a,b):
return a+b

imap()

# A generator function
def gen vals(N):
for i in range(N):
# yield evens and odds
yield 2 * 1, 2 * 1 + 1

with mp.Pool (processes=2) as pool:
sums = pool.imap(xyz,gen vals(1000),chunksize = 4)

= For pool worker 1, 4 calls to gen_vals() are completed - [(0,1),(2,3),(4,5),(6,7)]

= This list is sent to worker 0.
=  Worker O calls xyz(0,1),then xyz(2,3) etc and returns the results in a list to the main Python process.

= Four more calls are done and that list goes to worker 1.
=  When worker 0 is completed another 4 calls to gen_vals() are done to create the next chunk, etc.
= The generator gen_vals() never creates all 1000 sets of numbers in memory.
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Using map, starmap, imap, imap_unordered

= You have function calls being applied to some iterable (e.g. list of data objects, set of files, sets
of simulation parameters, etc.)

= The function call is computationally expensive — it takes a while to run.
= Each function call is independent of the others.
= Ex. Each input file in a list is read and processed separately.

= Then:

= The multiprocessing.Pool is worth investigating for your code.

= Else:

= Try the multiprocessing.Process code. This can be used to build more sophisticated
parallelization strategies. Or investigate some other libraries...
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More complex algorithms

= multiprocessing.Pool applies easily to for-loop
parallelization. What about more complex
patterns?
= Other tools in multiprocessing:
= Start & stop processes that execute functions.
= pipes,queues - send data between processes

= Shared memory - processes access data
without it being copied to them

= locks, semaphores - protect serial-only
resources from parallel access

= Writing to a common file, updating shared
memory, etc.

BOSTON
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A pipeline where multiple images go
through a series of filters. 2 images get
copied to a separate set of filters. The
output stage aggregates these results.
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Create Queue() objects for data transfer (q0...q6) = This can all be accomplished in your
Launch Process() objects to run functions (pO0...p5) Python code with the multiprocessing
= Queues are connected in the Process() call library.
. = How would you scale this to more cores?
Add data to the queues = processing starts = How about fewer?

Wait for data to return from the “output” process = |t's a lot of work.
Shut down processes, destroy queues. = External libraries make this significantly
easier.
EISI)?EESTNY = For extensive tutorials on the many ways to use the multiprocessing

library see: https://superfastpython.com/category/multiprocessing/



https://superfastpython.com/category/multiprocessing/

Parallelization with External Libraries

= When to look outside of standard Python:
Your dataset is greater than the amount of RAM you have available

= You are dealing with large Pandas dataframes, numpy arrays, CSV files, database fetches,
etc.

= You have numpy-centered numeric calculations
= EX. A custom image processing algorithm
= You want to scale past a single compute node
= mp is causing problems due to RAM usage or poor scaling due to its multi-process nature
= You want to implement more complex parallel algorithms
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Pandas in Parallel

= Modin
= |Implements ~90% of the Pandas DataFrame API.
= Autoscales Pandas calculations onto available cores.
= Developed by UC Berkeley since 2018

= parallel-pandas
= A simpler auto-parallelizing library for DataFrames.

= Dask DataFrames

= Can autoscale and use available cores.
= Built on top of Pandas.

= “Polars is a lightning fast DataFrame library/in-memory query engine.”
= 2-20x faster than Pandas, for many operations
= Efficiently uses memory and multiple cores

= This is a relatively recent library, developed at RPI in 2020.
= This is not compatible with your existing Pandas code. Using it requires a re-write of your code.
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https://modin.readthedocs.io/en/latest/index.html
https://pypi.org/project/parallel-pandas/
https://docs.dask.org/en/stable/dataframe.html
https://www.pola.rs/

-

Dask }

Array
~ Dask

= Dask supports parallelism beyond Pandas. Array

= Dask Array: parallel numpy arrays s
= |ncludes efficient shared-memory access to these arrays

= Dask Bag: parallelize generic functions like map or groupby on large collections

= Example: read a file where each line is a JSON string. Convert to a format that can be be converted to a
DataFrame.

= Dask Delayed: parallelize things that don’t work with the other approaches.
= For example, the image processing graph from a few slides ago.

= RCS is offering a Dask tutorial this summer — see the tutorial schedule.
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https://docs.dask.org/en/stable/array.html
https://docs.dask.org/en/stable/bag.html
https://docs.dask.org/en/stable/delayed.html

Ray Core "9‘ RAY

= Ray Is a system for scaling up and parallelizing machine learning
applications.

= Ray Core is its underlying distributed, parallel computation system.
= You can use Ray Core to implement a wide variety of parallel patterns.

= They have an example of using Ray to compute « using the same algorithm we used earlier.

= This is very useful if you're interested in concurrent programming
= more generalized parallel programming
= different parts of your program perform tasks in parallel

= Example: your text editor auto-saves your file while running a spelling check while
displaying text as you type.
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https://docs.ray.io/en/latest/
https://docs.ray.io/en/latest/ray-core/walkthrough.html
https://docs.ray.io/en/latest/ray-core/patterns/index.html
https://docs.ray.io/en/latest/ray-core/examples/highly_parallel.html

Common Parallel Libraries

numpy Numeric algorithms BLAS/LAPACK or MKL OpenMP or MKL

(C, usually)
cv2 Image processing OpenCV (C++) OpenMP or pthreads
Tensorflow, PyTorch, Machine learning CUDA or OpenCL OpenMP, pthreads,
Jax or GPU threads
numba Compile/accelerate numba C++ libs Intel TBB

Python functions

numexpr Compile numpy code numexpr libs OpenMP
(older, not common)

= Using Python for scientific computing naturally leads to the use of several libraries that
support parallel computation using multiple threads. Those are built on top of a small
set of threading libraries. Lots of other Python libraries use these “behind the scenes”.

Glossary
BLAS: Basic Linear Algebra Subprograms

BOSTON . LAPACK: Linear Algebra Package
UNIVERSITY . MKL: Intel Math Kernel Library

TBB: Intel Thread Building Blocks



N Cores: 1 single Precision

BLAS

80 A

= The Basic Linear Algebra
Subprograms library provides a variety 60 -
of functions for linear algebra type
calculations. 40 -

= This underlies a staggering number of
algorithms and computations including )
much of numpy and scipy. o

= High performance threaded BLAS 000 2000 300 400 5000

libraries continue to be an active area - SCC benchmark.
of computer science research. *  Note poor performance of default

Linux system BLAS library!
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python3/3.10.12 module on SCC

L]
Num BLAS librar Rt
blas_armpl_info:
NOT AVAILABLE
blas _mkl_info:
Anaconda, Windows NOT AVATLABLE
blis_info:
ey 1ibraries = ['blis’, "blis"]
In [4]: np.show_config() library_dirs = ['/share/pkg.8/blis/@8.9.8/install/lib" ]
blas_mkl_info: define macros = [('HAVE_CBLAS', None)]
libraries = ['blas', 'cblas', 'lapack’, 'blas', ‘'cblas', 'lapack’'] include_dirs = [ ‘/share/pkg.8/blis/@.9.8/install/include/blis"]
library_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\1lib"'] language = c
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] runtime_library_dirs = ['/share/pkg.8/blis/®.9.8/install/1lib"]
include_dirs = ['D:\\bld\\numpy_ 1595523881734\\_h_env\\Library\\include"'] blas_opt_info:
blasi?gt_1?f0: ['blas”, ‘cblas’, 'l k", 'blas', ‘cblas’, 'l k', 'blas', ‘"cblas’, '1 k"] 1ibraries = ['blis’, "blis']
ibraries = as', ‘cblas®, 'lapack’, as', ‘cblas®, 'lapack’, as', '"cblas', "lapac . : _ : : -
library_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\1lib"'] i;g;:;yagi:is _[[i?::;Efﬁgﬁﬁthl}?{?i?'aflnStallfllh ]
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] . = - = e o - - 1t
include dirs = ['D:\\bld\\numpy 1595523081734\\ h_env\\Library\\include'] include_dirs = ['/share/pkg.8/blis/@.9.8/install/include/blis"]

lapack_mk1l_info: langyage S - : - . .
libraries = ['blas', 'cblas', 'lapack', 'blas’, 'cblas’, 'lapack'] runtime_library_dirs = ['/share/pkg.8/blis/8.9.8/install/lib"]

library_dirs = ['D:\\bld\\numpy_1595523881734\\_h_env\\Library\\1lib'] lapack_armpl_info:
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] NOT AVAILABLE
include_dirs = [ 'D:\\bld\\numpy_ 1595523@81734\\_h_env\\Library\\include"] lapack mkl info:
lapack_opt_info: NOT AVAILABLE
libraries = ['blas', 'cblas', 'lapack', 'blas', ‘cblas', 'lapack', 'blas', 'cblas', 'lapack'] openblas_lapack info:

library_dirs = ['D:\\bld\\numpy_1595523081734\\_h_env\\Library\\1lib'] NOT AVAILABLE
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)] openblas_clapack_info:
include_dirs = [ 'D:\\bld\\numpy_ 1595523@81734\\_h_env\\Library\\include"] NOT AVAILABLE

flame_info:
NOT AVAILABLE
accelerate_info:

You can see the exact libraries that Numpy is NOT AVAZLABLE

lapack_info:
1 1 1 ) 1ibraries = [ ‘1 k', 1 k']
USIng Wlth the Command The OUtpUt WI” lib:::;ijirs = ???zharez"p:?;/hlis:"a.Q.El-."installflib']
language = 77

depend on the Python InSta”atlon runtime_library _dirs = ["/share/pkg.8/blis/8.9.8/install/lib"]

extra_link_args = ['-L/share/pkg.8/blis/8.9.8/install/1ib", "-llapack’]
; lapack_opt_info:
numpy ¢ Show_conflg () i liErsr‘Ees = ['lapack’, 'lapack’, 'blis', 'blis']
library_dirs = ['/share/pkg.8/blis/@.9.8/install/lib"]
language = ¢
runtime_library dirs = ['/share/pkg.8/blis/@.9.8/install/lib"]
extra_link _args = ['-L/share/pkg.8/blis/8.9.08/install/1lib’, "-llapack’]
define_macros = [('HAVE_CBLAS', None), ('NO_ATLAS INFO', 1)]
include_dirs = ['/share/pkg.8/blis/@.9.8/install/include/blis’
BOSTON Supported SIMD Exter[15i|:|ns inptEis MumPy install: :
UNIVERSITY baseline = S5E,55E2,55E3,555E3,55E41, POPCNT,S5E42, AV
found = F1B6C,FMA3,AVX2,AVXS12F,AVX5120D,AVX512 SKX,AVX512 CLX
not found = AVX512 CNL,AVX512 ICL
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Enabling Threaded Libraries on the SCC

= Many libraries on the SCC that use multiple cores are built on the
OpenMP or MKL threading libraries.

= The SCC disables this threading by default when you load Python or

miniconda modules by setting environment variables.

= Why? Because most jobs are single-threaded, and automatic threading leads to jobs using
more cores than they should...and then the jobs are killed by the process reaper.

= |n a compute job or at the command line you can enable these threads
and they will automatically be used.

BOSTON
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Threading Environment Variables on the SCC

Threading Library

OMP_NUM_THREADS OpenMP, MKL, numexpr
MKL_NUM_THREADS MKL

NUMBA NUM_THREADS numba
NUMEXPR_NUM THREADS numexpr

= Setting these variables to a value >1 will enable automatic threading for code that
uses the matching threading library.

= These should be set before running Python.

= Some libraries have their own internal mechanism can be used in place of the
variable.

= OpenCV example: cv2.setNumThreads (integer val)

EI\CTI){?‘EESTNY On Macs with the Accelerate library use VECLIB_MAXIMUM_THREADS in addition to
OMP_NUM_THREADS



Enable OpenMP ThreadinginaJob ...

#!/bin/bash -1
= Request a multi-core job: # Ask for 4 cores.
#S -pe omp 4
= qrsh -peomp 4
module load python3/3.10.5
= SCC jobs automatically set the variable
NSLOTS to the number of requested cores.

# This sets the number of
# allowed threads to 4.
export OMP NUM THREADS=
=  Environment variables can be set in various |
i ) _ # Run your Python script, as
ways on different operating systems. Here is a } this uses a lot of numpy code

quide for Windows, Linux, and Mac OSX. # and might benefit from threads:
python myscript.py

#....did it run faster?

BOSTON
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https://www.schrodinger.com/kb/1842

numba

= numba: auto-compiler for Python code.
= Can compile code for GPU execution.

= Supports auto-parallelization. Their prange
function creates a parallelized loop.

= This lets you do low-level threading via Python.

= Thread control variable:
NUMBA NUM THREADS

BOSTON
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Numba can also compile Python code so
it is callable from C or C++.

Read the User Manual and the
Reference Manual

Check out the assortment of environment
variables that can be set to influence
Numba behavior.



https://numba.pydata.org/
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/index.html
https://numba.pydata.org/numba-doc/dev/reference/index.html
https://numba.readthedocs.io/en/stable/reference/envvars.html
https://numba.readthedocs.io/en/stable/reference/envvars.html

.njit(parallel=True, fastmath=True)

numba usage def numba jit loop(mat):

rows,cols = mat.shape
for i in numba.prange(rows) :

= Use the decorators for 5 in numbaprangel(cols):
.. . mat[i,3] = 2.0 * mat[i,]] - 1.
@numba.jit or @numba.njit return mat

= There are 2 modes:

= object: Python types are used.
numba must call out to Python )
to retrieve values. = @numba.njit

= nopython — no Python types = These force nopython mode.
are used, numba accesses
values directly. = fastmath=True: allows the
= This is faster. Try to do this. compiler to use special CPU

Instructions.
UNIVERSITY

open numba_par.py

= @numba.jit(nopython=True)



numba Usage Let’s calculate = with Python and numba

= |n general, use numpy ndarrays and 14
functions with numba for the best /
performance.

= Avoid calls to Python functions and sub-libraries \ /

= numba’d functions should only call other
numba’d functions

= This is a large library — test, profile, read the Open numba_pi.py
docs! R

BOSTON
UNIVERSITY



When is this useful?

= |f your Python code heavily uses numpy data structures then it may
benefit from automatic threading or compilation from numba.

= numba has been implementing a growing number of Python data types,
see their docs for the latest.

= Read the Numba docs.
= Numba is under continuous rapid development - new features appear all the time.

= Experiment! more threads is not always better.

= The overhead of launching threads and distributing work can easily exceed the parallel
execution speedup for small problems.

BOSTON
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https://numba.pydata.org/numba-doc/dev/reference/pysupported.html#built-in-types

End-of-course Evaluation Form

= Please visit this page and fill in the evaluation form for this course.

= Your feedback is highly valuable to the RCS team for the improvement
and development of tutorials.

= |f you visit this link later please make sure to select the correct tutorial —
name, time, and location.

http://scv.bu.edu/survey/tutorial _evaluation.html

BOSTON
UNIVERSITY


http://scv.bu.edu/survey/tutorial_evaluation.html
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