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Run Spyder

▪ Start the Anaconda 

Navigator

▪ Click on Spyder’s 

Launch button

▪ Be patient…it takes a 

while to start.



Introduction

▪ Many programs can perform simultaneous operations, given multiple 

processors to perform the work.

▪ Generally speaking, the burden of managing this lies on the programmer.

▪ In this tutorial we’ll go over a variety of ways to achieve parallelism in 

Python code.



Limits on Program Speed

▪ Input/Output (I/O): The rate at which data can be read from a disk, a 

network file server, a remote server, a sensor, a user’s physical inputs, 

etc. limits the performance of the program.

▪ Memory: The quantity of memory on the system limits performance. 

▪ CPU (or compute): The speed of the processor is the limit on 

performance.
▪ This is most commonly the case for scientific computing.



Types of Parallelization

▪ On the SCC: queue parallelization.
▪ You have N files to process.  Submit N jobs.

▪ Or, one job array that launches N jobs.

▪ This often requires little to no changes to your code…

▪ Multiple Processes
▪ Your program launches several copies of itself (or other programs) to solve the computational 

problem.

▪ Multiple Threads
▪ Your program creates threads, which are parts of the same program that can execute 

independently of each other.

▪ Parallel Libraries
▪ Use a library that internally implements some kind of parallelization.

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array


Performance Considerations

▪ Not every part of a program can benefit from parallelization.

▪ Some parts of program are inherently serial.

▪ Even for a function that can be done in parallel…
▪ Is it worth the programming effort?

▪ Is it worth the reduction in readability and ability to debug?

▪ Does the function use up enough program time to make parallel computation worth the 

overhead?

▪ Parallelization is a form of optimization.  Profile your code.
▪ For more on profiling – see our Python Optimization tutorial.



Amdahl’s Law

▪ The speedup ratio S is the 

ratio of time between the 

serial code (T1) and the time 

when using N workers (TN):

𝑆 =
𝑇1
𝑇𝑁

=
𝑇1

𝑓 +
1 − 𝑓
𝑁

𝑇1

N = number of threads or 

processes

f = fraction of program that 

is serial

▪ This is the theoretical best speedup 

achievable with parallelization.

Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing


A word of caution

▪ When using the Python 

multiprocessing library, always 

use the “if __name__” 

convention in your main script:

▪ This will make your script work 

in interactive Python like 

Spyder.

import multiprocessing

# ...

# python script here with functions 

# defined

# ...

def script_function():

# do python stuff here

with multiprocessing.Pool(4) as p:

# code block etc ...

        

if __name__ == '__main__':

script_function() 

▪ It is required on Windows 

even in Jupyter notebooks.  



How many cores should Python use?

▪ The example file get_n_cores.py provides a function that 

checks how many cores have been assigned to an SCC job.
▪ Based on the common Python library psutil 

▪ It will also work on your own computers and will choose the 

number of installed cores.

▪ Feel free to use this in your own code.



Let’s Try!

▪ In Spyder, open the file lin_alg.py

▪ The computation: a linear algebra 

matrix-matrix multiplication.

▪ Completely CPU-bound, scales well 

to multiple threads.

▪ How does your computation scale 

with the number of threads?

▪ It plots the speedup ratio. What 

did you expect?  What if you 

change the size of the matrices?



Logical, Physical, and Efficiency Cores

▪ Intel Core i7-1165G7

▪ 4 real cores, 4 logical cores
▪ Macbook Pro (from 2021)

▪ Apple M1 Pro CPU

▪ 6 performance cores, 2 efficiency

▪ About This Mac → More Info → System 

Report 

▪ get_n_cores() → reports 8 cores

The Python psutil library can’t yet 

auto-detect efficiency cores.  It will 

report them as physical cores.  

Logical cores provide no benefit 

for compute-bound problems

Efficiency cores used last 

by the OS. Avoid these!

https://github.com/giampaolo/psutil/issues/2034


Python Language Parallelism

▪ Python provides a number of ways to perform parallel (aka concurrent) 

computations.

▪ Read the official docs.

Library Common Usage

threading and 

asyncio

I/O-bound programs.  Example: web server, network service

multiprocessing CPU-bound parallel execution.

concurrent.futures Modern-style wrapper on top of threading & multiprocessing.  Useful for GUIs or 

porting code to Python that uses this approach.

subprocess Launching external processes.

https://docs.python.org/3/library/concurrency.html


Python Language Parallelism

▪ There are many external libraries available.

Library Common Usage

numba Function compiler, automatic multithreading

dask Scalable auto-parallelizing library for data science, including scalable Pandas 

dataframes (and much more). Can use multiple compute nodes.

polars An auto-multithreaded alternative for Pandas. 

joblib A popular library for straightforward parallelization.

ray Library that’s popular in machine learning applications.

mpire A newer library, syntax is deliberately very similar to multiprocessing with higher 

performance.

https://numba.pydata.org/
https://www.dask.org/
https://www.pola.rs/
https://joblib.readthedocs.io/en/stable/
https://www.ray.io/
https://github.com/sybrenjansen/mpire


The Global Interpreter Lock

▪ The GIL limits the amount of multi-threading in the Python interpreter.
▪ Originally introduced as part of Python’s memory management system.

▪ For more details, see this explanation.

▪ Pure Python code runs in one thread only.
▪ This is unlike languages like Java, C#, C++, Fortran, Matlab, or R where threads are easily 

used by the programmer.

▪ Multi-threaded code in Python is mostly implemented in external libraries.

https://realpython.com/python-gil/


Python Threading

▪ The Python threading library allows for multiple threads to be created.

▪ Only 1 can actually execute at a time: do not use this for CPU-bound problems.

▪ This works well for I/O-bound problems.  

▪ Each thread runs as soon as it has received data

▪ Most of the threads are waiting for data from the disk, the network, the user, etc.

▪ Application examples:  Python web servers, file servers, network service, calling a web server API…

https://docs.python.org/3/library/concurrency.html


Python Multiprocessing

▪ For CPU-bound problems multiple Python 

processes can be launched to do computations in 

parallel.
▪ If you just want to parallelize a for loop, start here.

▪ The multiprocessing library handles inter-process 

communication automatically.

▪ Most convenient interface: the Pool, which 

provides a set of Python processes that divide 

work between them.

R=1

▪ Example:  pool_basics.py 

https://docs.python.org/2/library/multiprocessing.html


How the Pool.map() Works
▪ A function is pickled and sent 

to each pool worker.

▪ The collection of data is split 

up, pickled, and sent to each 

worker.

▪ Each worker unpickles the 

function & data, runs the 

function on each element of the 

collection, pickles the result, 

and sends it back.

▪ The main process unpickles 

the results and puts them into a 

list.

Pool.map(xyz,values)

xyz(a0)

xyz(a1)

xyz(a2)

xyz(a3)

xyz(a4)

xyz(a5)

xyz(a6)

xyz(a7)

4 process pooldef xyz(a):

   …code…

a0

a1

a2

a3

a4

a5

a6

a7

iterable

(list, tuple, generator, set, etc.)

https://docs.python.org/3/library/pickle.html


multiprocessing.pool.Pool.map() options

▪ The Pool is the simplest way to add parallelism to Python code.

▪ Arguments:    map(function, iterable, chunksize)

▪ function:  the function to be applied to each element of the iterable

▪ iterable: a list, set, generator, dictionary, i.e. something that can be 

looped over

▪ chunksize: “This method chops the iterable into a number of chunks which it submits 

to the process pool as separate tasks. The (approximate) size of these chunks can be 

specified by setting chunksize to a positive integer.”



Your turn to parallelize a problem…

▪ Open the file my_pool.py
▪ The problem:  count the characters in 1M English words

▪ You’ll implement a Pool to parallelize the solution.



Multiple iterables – Pool.starmap()

▪ To pass multiple arguments use 

starmap()

▪ If you have 1 object and a list, try 

this to create a list for starmap:

def xyz(a,b):

return a+b

 

vals = [(1,2), (3,4)]

with mp.Pool(processes=2) as pool:

sums = pool.starmap(xyz,vals)

 

# 2 function calls happen in parallel:

#    xyz(1,2)

#    xyz(3,4)

import itertools

a='arg1'

b=range(3)

list(zip(b,itertools.repeat(a)))

# --> [(0, 'arg1'), 

#      (1, 'arg1'), 

#      (2, 'arg1')]



Pool.imap() and Pool.imap_unordered()

▪ map() has a disadvantage in that the iterable must be fully in memory 

before it can be distributed.  

▪ imap() is lazier.  It will assign chunks of work to each worker and pull them 

as needed from the iterable.  
▪ Generators can be used to save RAM in the main process.

▪ imap_unordered() is similar but it does not guarantee the output order 

matches the input order.
▪ Good for when computations take a varying amount of time.



imap()

▪ For pool worker 1, 4 calls to gen_vals() are completed →  [(0,1),(2,3),(4,5),(6,7)]

▪ This list is sent to worker 0.
▪ Worker 0 calls xyz(0,1),then xyz(2,3) etc and returns the results in a list to the main Python process.

▪ Four more calls are done and that list goes to worker 1.

▪ When worker 0 is completed another 4 calls to gen_vals() are done to create the next chunk, etc.

▪ The generator gen_vals() never creates all 1000 sets of numbers in memory.

def xyz(a,b):

return a+b

 

# A generator function    

def gen_vals(N):

for i in range(N):

# yield evens and odds

yield 2 * i, 2 * i + 1

with mp.Pool(processes=2) as pool:

sums = pool.imap(xyz,gen_vals(1000),chunksize = 4)



multiprocessing is quite extensive…

▪ More functionality exists for the Pool method.
▪ Shared memory between workers (avoids copies in interprocess communication)

▪ Asynchronous methods – map_async, starmap_async

▪ These let the main process keep running after dispatching work.

▪ Process control: 
▪ Launch Python processes, do a calculation, wait for one or more processes to finish.

▪ Interprocess communication using Queue and Pipe classes.

▪ Synchronization using the Barrier, Lock, and Semaphore classes.

▪ This can be used to implement much more elaborate parallelization strategies than the Pool at 

the expense of more programmer labor.  



Using map, starmap, imap, imap_unordered

▪ If:
▪ You have function calls being applied to some iterable (e.g. list of data objects, set of files, sets 

of simulation parameters, etc.)

▪ The function call is computationally expensive – it takes a while to run.

▪ Each function call is independent of the others.

▪ Ex. Each input file in a list is read and processed separately.

▪ Then:  
▪ The multiprocessing.Pool is worth investigating for your code.

▪ Else:
▪ Try the multiprocessing.Process code. This can be used to build more sophisticated 

parallelization strategies. Or investigate some other libraries…



Parallelization with External Libraries

▪ Python multiprocessing: built into Python, works well on a broad array of 

problems, performs pretty well.

▪ When to look elsewhere:
▪ Your dataset is greater than the amount of RAM you have available

▪ You are dealing with large Pandas dataframes, numpy arrays, CSV files, database fetches, 

etc.

▪ You have numpy-centered numeric calculations

▪ Ex. A custom image processing algorithm

▪ You want to scale past a single compute node

▪ mp is causing problems due to RAM usage or poor scaling due to its multi-process nature



Parallel Pandas?

▪ It’s possible to do some parallel calculations with Pandas and 

multiprocessing but it’s not straightforward.

▪ The strategy would be to send columns of dataframes to different 

processes and merge the results.

▪ This does not work with common Pandas operations like agg, 

groupby, query, etc.



Dask   https://dask.org

▪ Parallelizing pandas operations can be complex.
▪ What if your data is too large to even read into a pandas DataFrame?

▪ Dask provides an equivalent DataFrame class that natively 

supports parallel computations.
▪ Most pandas code can be handled via Dask just by importing the dask library instead of 

pandas.

▪ Specific tutorial:  https://tutorial.dask.org/01_dataframe.html 

▪ Installed with SCC python3 modules.

▪ Parallel computations can be run on a single computer or on a 

cluster using MPI communication.

▪ Large data sets can be loaded piecemeal to work within the 

memory limits of the computer.

pip install (not needed on the SCC)
pip install dask distributed dask-jobqueue

conda install
conda install dask dask-core

Open par_pandas_dask.py

https://dask.org/
https://tutorial.dask.org/01_dataframe.html


Dask 

▪ Dask supports parallelism beyond Pandas.

▪ Dask Array: parallel numpy arrays
▪ Includes efficient shared-memory access to these arrays

▪ Dask Bag: parallelize generic functions like map or groupby on large 

collections
▪ Example:  reformat every line of a CSV file so it can be converted to a DataFrame

▪ Dask Delayed: parallelize things that don’t work with the other 

approaches.  
▪ This can be used in place of multiprocessing and can be applied to wider variety of programs 

than a multiprocessing.Pool

https://docs.dask.org/en/stable/array.html
https://docs.dask.org/en/stable/bag.html
https://docs.dask.org/en/stable/delayed.html


Polars

▪ “Polars is a lightning fast DataFrame library/in-memory query engine.”
▪ 2-20x faster than Pandas, for many operations

▪ Efficiently uses memory and multiple cores

▪ This is a relatively recent library, developed at RPI in 2020.

▪ If you are working with DataFrame style programs and Pandas:
▪ Polars benchmarks as significantly faster than Pandas or Dask (which uses Pandas)

▪ A conversion from Pandas to Polars is essentially a re-write of your program due to significant 

differences in syntax

▪ Parallelize/scale up existing Pandas codebase → try dask

▪ New or smaller project→ try Polars to see if you like it

https://www.pola.rs/


Parallelization via Underlying Libraries

▪ Enabling parallelism in compiled code (C, C++, etc.) libraries that are 

being used by your Python code is very convenient.

▪ For many Python codes, this can be sufficient to achieve good parallel 

speedups without re-writing your code around multiprocessing.

▪ This is particularly true for codes that make heavy use of Pandas, numpy, 

and scipy data structures and routines.



Common Parallel Libraries

▪ Using Python for scientific computing naturally leads to the use of several libraries that 

support parallel computation using multiple threads.  Those are built on top of a small 

set of threading libraries.  Lots of other Python libraries use these “behind the scenes”.

Python Library Underlying Lib. Threading Lib.

numpy (scipy, pandas, etc.) BLAS or MKL OpenMP or MKL

cv2 OpenCV (C++) OpenMP or pthreads

Tensorflow, Keras, PyTorch CUDA or OpenCL OpenMP or GPU threads

numba numba C++ libs Intel TBB

numexpr numexpr libs OpenMP

▪ BLAS: Basic Linear Algebra Subprograms

▪ MKL: Intel Math Kernel Library

▪ TBB: Intel Thread Building Blocks



BLAS

▪ The Basic Linear Algebra 

Subprograms library provides a variety 

of functions for linear algebra type 

calculations.

▪ This underlies a staggering number of 

algorithms and computations including 

much of numpy and scipy.

▪ High performance threaded BLAS 

libraries continue to be an active area 

of computer science research.
▪ SCC benchmark.

▪ Note poor performance of default 

Linux system BLAS library!



Numpy BLAS library

▪ You can see the exact libraries that Numpy 

is using with the command.  The output will 

depend on the Python installation:

numpy.show_config()

Anaconda, Windows

python3/3.10.12 module on SCC



Enabling Threaded Libraries on the SCC

▪ Many libraries on the SCC that use multiple cores are built on the 

OpenMP or MKL threading libraries.

▪ The SCC disables this threading by default when you load Python or 

miniconda modules by setting environment variables.
▪ Why?  Because most jobs are single-threaded, and automatic threading leads to jobs using 

more cores than they should…and then the jobs are killed by the process reaper.

▪ In a compute job or at the command line you can enable these threads 

and they will automatically be used.



Threading Environment Variables on the SCC

▪ Setting these variables to a value >1 will enable automatic threading for code that 

uses the matching threading library.

▪ These should be set before running Python.

▪ Some libraries have their own internal mechanism can be used in place of the 

variable.

▪ OpenCV example:  cv2.setNumThreads(integer_val)

Variable Threading Library

OMP_NUM_THREADS OpenMP, MKL, numexpr

MKL_NUM_THREADS MKL

NUMBA_NUM_THREADS numba

NUMEXPR_NUM_THREADS numexpr

On Macs with the Accelerate library use VECLIB_MAXIMUM_THREADS instead of OMP_NUM_THREADS



Enable OpenMP Threading in a Job

▪ Request a multi-core job:
▪ qrsh -pe omp 4

▪ SCC jobs automatically set the 

variable NSLOTS to the number of 

requested cores.

▪ Environment variables can be set in 

various ways on different operating 

systems. Here is a guide for Windows, 

Linux, and Mac OSX.

#!/bin/bash -l

# Ask for 4 cores.

#$ -pe omp 4

module load python3/3.10.5

# This sets the number of 

# allowed threads to 4.

export OMP_NUM_THREADS=$NSLOTS

# Run your Python script:

python myscript.py 

#....did it run faster?

Example qsub script:

https://www.schrodinger.com/kb/1842
https://www.schrodinger.com/kb/1842


numba  

▪ numba: auto-compiler for Python code.

▪ Can compile code for GPU execution.

▪ Supports auto-parallelization. Their prange 

function creates a parallelized loop.

▪ This lets you do low-level threading via Python.

▪ Numba can also compile Python code so 

it is callable from C or C++.

▪ Read the User Manual and the 

Reference Manual

▪ Check out the assortment of environment 

variables that can be set to influence 

Numba behavior.

▪ Thread control variable:   

                      NUMBA_NUM_THREADS

https://numba.pydata.org/
https://numba.readthedocs.io/en/stable/user/parallel.html
https://numba.readthedocs.io/en/stable/user/index.html
https://numba.pydata.org/numba-doc/dev/reference/index.html
https://numba.readthedocs.io/en/stable/reference/envvars.html
https://numba.readthedocs.io/en/stable/reference/envvars.html


numba usage

▪ Use the decorators 

@numba.jit or @numba.njit

▪ There are 2 modes:

▪ object: Python types are used. 

numba must call out to Python 

to retrieve values.

▪ nopython – no Python types 

are used, numba accesses 

values directly. 

▪ This is faster. Try to do this.

▪ @numba.jit(nopython=True)

▪ @numba.njit

▪ These force nopython mode.

▪ fastmath=True:  allows the 

compiler to use special CPU 

instructions.

@numba.njit(parallel=True, fastmath=True)

def numba_jit_loop(mat):

''' A parallel double for loop over 

a 2D numpy ndarray '''

rows,cols = mat.shape

for i in numba.prange(rows):

for j in numba.prange(cols):

mat[i,j] = 2.0 * mat[i,j] - 1.0

open numba_par.py



numba usage

▪ In general, use numpy ndarrays and 

functions with numba for the best 

performance.

▪ Avoid calls to Python functions and sub-libraries

▪ numba’d functions should only call other 

numba’d functions

▪ This is a large library – test, profile, read the 

docs!

R=1

Let’s calculate p with Python and numba

Open numba_pi.py



numba

▪ Profiling is necessary with 

numba.  Make sure numba 

provides a speedup before 

trying it in parallel.

▪ Open numba_par.py for 

some examples of applying 

numba.

▪ Then we’ll look at 

numba_convert.py to see 

how an existing function 

might be converted to run 

faster under numba. 

https://numba.pydata.org/


When is this useful?

▪ If your Python code heavily uses numpy data structures then it may 

benefit from automatic threading or compilation from numba.

▪ Read the Numba docs.
▪ Numba is under continuous rapid development - new features appear all the time.

▪ Eperiment! more threads is not always better.  
▪ The overhead of launching threads and distributing work can easily exceed the parallel 

execution speedup. 



End-of-course Evaluation Form

▪ Please visit this page and fill in the evaluation form for this course.

▪ Your feedback is highly valuable to the RCS team for the improvement 

and development of tutorials.

▪ If you visit this link later please make sure to select the correct tutorial – 

name, time, and location.

http://scv.bu.edu/survey/tutorial_evaluation.html

 

http://scv.bu.edu/survey/tutorial_evaluation.html
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