Python Optimization

vO.7

Research Computing Services
IS&T

BOSTON
UNIVERSITY

‘ File Help ‘
RU N Spyder {D) ANACONDA NAVIGATOR
‘ i Home Applications on ‘ base (root) v| Channels Refresh
| n Environments 2 o o o o
= Startthe Anaconda ot

. ' o=
N aVI g ato r | CMD.exe Prompt JupyterLab Notebook Powershell Prompt

~n Community

0.1.1 126 6.0.3 0.0.1
Run a cmd.exe terminal with your current An extensible environment for interactive Web-based, interactive computing notebook Run a Powershell terminal with your current
environment from Navigator activated and reproducible computing, based on the environment. Edit and run human-readable environment from Navigator activated
Jupyter Notebook and Architecture. docs while describing the data analysis.

= Click on Spyder’s o]

) inck .
Launch button o o
QtCome Spyder anypytools
- Be patlent e It ta keS a PyQL GUI thatsuu:c:rts inline figures, profer Scientific PY?hon Development o o

Documentation multiline editing with syntax highlightin|

h . I graphical calltips, and more.
while to start.
Developer Blog

EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugaging and introspection features

[]

(] (]
t

Yy o 7

BOSTON

UNIVERSITY

Outline

= Introduction
= Profiling

= Data Structures
= Generators

= Accelerators

= Syntax

BOSTON
UNIVERSITY

Optimization
= What are you optimizing? = How do you decide when
optimization is necessary?
= Run time
= Memory usage = What should be changed in a
= 1/O (storage read/write) program during optimization?

= Code structure

= Algorithm selection = |s Python fast?

BOSTON
UNIVERSITY

Why Bother to Optimize?

42 Years of Microprocessor Trend Data

= Computers aren’t getting 107

Transistors

much faster. 108 (thousands)
10° Single-Thread
Performance 3
. S INT x 1
= Easier access to data 10* . ‘Fr::jemy"(JH)z)
means there’s more 10° B
. . ypical Power
computation possible than 102 { (Watts)
" Numb f
In the paSt. 10 . L:gi]ca?r(?ores
10° _‘, o ‘0 rrrrrr A5 TP OIRR SUUURID-O bl SR
. Better COde means yOU can 1970 1980 1990 2000 2010 2020

get more done! Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

BOSTON https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
UNIVERSITY

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

.
Some words of wisdom, lightly paraphrased

The Elements of Programming Style, by Brian W. Kernighan and P. J. Plauger, 1974.

= Before you make your code faster:
= Make it right
= Make it clear

= Keep it right when you make It faster.

= Fundamental improvements in performance are most often
made by algorithm changes, not by tuning.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

N
Outline

= Introduction
= Profiling

= Data Structures
= Generators

= Accelerators

= Syntax

BOSTON
UNIVERSITY

Profiling
= Before making code changes = Ways to profile:
you must profile the code. = |nsert timing statements into
your code

= Laborious but useful.
= We are really bad at

guessing how different parts

of programs perform! = Use profiling tools that can

measure.
= This is true independent of = Function call times
your degree of programming = Line-by-line execution times
experience. = Memory consumption

= CPU hardware utilization
UNIVERSITY

Profiling Drawbacks

= Your program can take much = A small test problem might
longer to run when it is being be too small to reveal
profiled. performance problems.

= |t may consume more
memory.

BOSTON
UNIVERSITY

Python Profiling Tools

= The Python Standard Library = The IPython interpreter in

Includes two profilers: Spyder and Jupyter will also
= cProfile (default) provide timing information
= profile with the special commands

%time and %timeit.

= Documentation is online.

BOSTON
UNIVERSITY

https://docs.python.org/3.6/library/profile.html

Additional Profiling Tools

= We'll use two other profilers today:

* |ine_profiler = memory profiler
= Line-by-line timing statistics for = Line-by-line memory usage
selected functions. statistics for selected functions.

= For all python3 modules.

We’ll pause here to make sure everyone has this installed in their Anaconda setups.
If you’re using the SCC and a python3 module they’re already installed.

BOSTON
UNIVERSITY

https://github.com/rkern/line_profiler
https://pypi.org/project/memory-profiler/

N
A simple sample code

= Open row_vs_col _orig.py = 3 implementations:

= Calculate the new matrix values by
multiplying the constant against

= This does a simple whole rows at a time
calculation where a Numpy = ...by multiplying against whole
C . : columns at a time
matrix (i.e. a 2D table) Is . o
oo = ...using Numpy’s built-in element-by-
multiplied by a constant element multiplication syntax.
value.

BOSTON
UNIVERSITY

Profiling: manual timing

= Use the Python time library:
https://docs.python.org/3.8/library/time.html

= Next, open row_vs_col_timing.py = TwO ways:

= time.perf_counter():

= Returns a floating point value
representing a time.

= time.time():

= Floating point value of seconds
since Jan. 1, 1970, 00:00:00

= This does manual timing of the
function calls.

= \Which version is the fastest?

= Change the size of the matrix — does
this change your result?

import time

st = time.perf counter ()

BOSTON # do something...
UNIVERSITY .
et = time.perf counter()

print(f'Elapsed (sec): {et-st:.3f}")

https://docs.python.org/3.8/library/time.html

decorator

Function Decorators

c do something... h
my_func(args)
= These are wrappers around
. _ domore... Y,
functions.

= Written as Python functions.

= You can intercept a function
call and do whatever you like
before calling the wrapped
function.

= After the function you can
again do whatever you like
before returning values. 4+ call the function:

ny_tone (1,2,)
UNIVERSITY —_

Add a decorator to a
function

def my func(x,y,z):

Better Manual Profiling

= Open row_vs_col decorator.py = How It works:
* This implements a function = |ntercept a call to a function
decorator to automatically time and start a timer.

function calls. .
= Call the function.

= |ntercept the function return,
stop the timer.

= Print out the elapsed time.

= Return the function’s return
value.

BOSTON
UNIVERSITY

. _ In :5:5 %TL;%I5DME_fUHCﬁ1,E.4,5,1j
Spyder Tlmlﬂg Wall time: 2.18 s

In [4]: %time some func(l1,8.4,08.1)

wali iime: 515 ms

= In the Python console use:

= $time ..python code..
= Prints time to run the code
= $timelt ..python code..

* Runs the code multiple times, reports timing
statistics

BOSTON
UNIVERSITY

. dev. of 7 runs, 1 loop each)

Spyder Timing

import time

def some_func(x,y,z):
time.sleep((x+y+z)/3)

= |n source code you can label ® e

a cell with #%%

= Then put $%time or
$$timeit atthe top of the

cell.

= These are NOT PYTHON o
commands — don’t leave
them in your code.

BOSTON
UNIVERSITY

Console output

-~ : C? Run cell and advance Shift+Return
some_func(1.5,0.1,2)
C? Re-run last cell Alt+Return
#% I+ Run selection or current line Fa

Go to definition Ctrl+G

Ctrl+Z

Ctrl+Shift+Z

Ctrl+C
Ctrl+V

Ctrl+A

Ctrl+0
Ctrl+1

Ctrl+Alt+D

In [1@]: runcell(l, °
Presentatio

VLT
Wall time: 1.21 s

In [11]:

Profiling: Using the Python Profiler

Return to row_vs_col_orig.py & Spyder (Python 3.7)

File Edit Search Source m Debug Consoles Projects Tools WView Help

. O =S s hE B

Spyder can run the Python profiler for B Run cel Ctrl+Return

Editor - C:\Users\bgregor\Drophbe resentations\Opt
yOU. E¥ Run cell and advance Shift+Return

|_tirming. tor.
= row_vs_col_tming.py X Re-run last cell Alt+Return R
1 B} Run selection or current line Fa

Choose the menu option Run->Profile - @ Re-run last script 5
M # Configuration per file.. Ctrl+F6
@ Profile F10

4
5

6 An example for use with basic timing and profiling
7

8

9 @author: bgregor

1

BOSTON
UNIVERSITY

Spyder Profiling Output

Profiler = 3
Th\Users\bgregor\Dropbox (BOSTON UNIVERSITY)\Research Computing’, Tutorials\ Tutorial Presentations\Optimizing Python\row_vs_col_orig.py | & P Profie Stop
e RE 02 Jan 2020 09:15 Output Save data = Load data Clear comparison
Function/Module Total Time ~ Diff Local Time Diff Calls Diff File:line
[_find_and_load 217.24 ms 1.88 ms 165 <frozen importlib._bootstrap> .
col_by_col 174.22 ms 174.22 ms 1 C:/Users/bgregor/Dropbox (BO...
[ones 45,83 ms 12.30 us 2 Chanaconda3_2018.2\lib\site-pa...
built_in 36.13 ms 38.15 ms 1 C:/Users/bgregor/Dropbox (BO...
row_by_row 21.03 ms 21.03 ms 1 C:/Users/bgregor/Dropbox (BO... | -

= The Profiler tab shows total time spent in each function.

= |f functions call functions those calls can be shown as well — click
the triangles to expand the results.

BOSTON
UNIVERSITY

Timing and Profiling in a Jupyter Notebook

Simple timing can be done with the same
commands.
= Ootime, %timeit — apply to a single line of code

= 9%%time, %%timeit — apply to a cell. Place
these at the top of the cell.

$prun runs the Python profiler for a
function call.

Tosee helpadda ?: $time?

BOSTON
UNIVERSITY

In [6]:

In [11]:

In [8]:

In [12]:

In [13]:

4 fu

Ordered by

import numpy as np
mat_size = 500
Let's just multiply by 2.
scaling_value = 2.@
def row_by_row(A,mat):
' compute mat = A*mat row-by-row "'’
rows = mat.shape[@]
for i in range(rows):
mat[i,:] = A * mat[i,:]
return mat

mat = np.ones([mat_size,mat_size])

%time mat = row_by_row(scaling_wvalue, mat)

Wall time: 5.98 ms

%timeit row_by_row(scaling_value, mat)

2.29 ms t 349 us per loop (mean t std. dev. of 7 runs, 1@ loops each)

%prun row_by_row(scaling_value, mat)

nction calls in ©.€83 seconds

: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

1

1
1
1

0.003 ©.003 ©.e03
0.000 ©.000 ©.e03
©6.000 ©.000 ©.ee3
6.000 ©.000 ©.000

©.003 <ipython-input-6-652953e76d87>:7(row_by_row)
©.003 {built-in method builtins.exec}

©.883 <string>:1(<module>)

©.800 {method 'disable' of '_lsprof.Profiler' objects}

Command Line Python Profiling

= Command line profiling = Syntax:
results are printed to the python -m cProfile run.py
screen or can be saved to a
file. = Sort by statistics:

python -m cProfile —-s time run.py

= This can be done inside of a |
batch job on the SCC... = Best use — save to a file and use a

utility to study the output:

python -m cProfile —-o prof.out run.py

BOSTON
UNIVERSITY

https://docs.python.org/3.6/library/profile.html#the-stats-class

python -m cProfile -o prof.out run.py

Python Profiling Tools
= The SCC has 2 profiling visualization tools for Python

= kcachegrind * snakeviz
= Run using the Centos7 environment: = Runs in a browser
= scc-centos’/7 kcachegrind
_ _ = To use:
= Convert prof.out to the required file
format open kcachegrind:
pyprof2calltree is part of the # lst load your python3 module
python3/3.10.12 module. # one-time install
pyprof2calltree -1 prof.out -o prof.log pip install --user snakeviz
scc-centos7 kcachegrind prof.log ~/.local/bin/snakeviz prof.out

BOSTON
UNIVERSITY

http://kcachegrind.sourceforge.net/html/Documentation.html
https://jiffyclub.github.io/snakeviz/

N
kcachegrind

& prof.log i o Bl
File View Go Settings Help

I;jl Open 4@ Back ~ Ep Forward = & Up = | 9 Relative =) Cycle Detection Q-I-D Relative to Parent <> Shorten Templates | Nanoseconds -

Top Cost Call Stack ® col by col

ns Calls Function Types | Callers | all callers | Callee Map | Source Code
312 185 M _find_and load_unlocked <cycle 6> Event Type Incl Self Short Formula
5.11 177 & _load_unlocked <cycle 6> I i .
5.11 139 M exec_module:722 <cycle 6> Nanoseconds [63.19 . 63.19 s

5.10 139 & call_with_frames_removed <cycle 6=
5.10 139 M <built-in method builtins.exec> <cycle 6>

Flat Prafile E3]
Search: | (No Grouping) «
Incl. Self Called Function Location
ml 100.01 2.53 2 B <cycle 6> {unknown)
ml 94.90 2.11 1 ol =<module> <cycle 6> row_vs_col_orig.py
[, 63.19 [63.19 1 col_by col row_vs_col_orig.py
I 14.70 § 14.70 1 o built_in row_vs_col_orig.py
1 10.34 0.00 2 o ones numeric.py
! 10.34 ¢ 10.34 3 o =<built-in method numpy.... ~
I 10.34 0.00 2 W copyto <__amray_function__ internals= Profile Part - celf callec Comment
4.56 4,56 1 M row_by_row row_vs_col_orig.py
1.35 0.01 139 M exec_module:722 <cycle... <frozen importlib._bootstrap_external>
1.34 0.04 139 W get_code =frozen importlib._bootstrap_external=
1.08 0.02 185 @l _find_and_load_unlocked... <frozen importlib._bootstrap=
1.06 0.03 182 w _find_spec =frozen importlib._bootstrap=
1.01 0.00 177 M find_spec:1272 <frozen importlib._bootstrap_external=
1.00 0.02 177 W _get_spec:1240 <frozen importlib._bootstrap_external=
0.94 0.08 402 m find_spec:1356 <frozen importlib._bootstrap_external>
0.80 0.03 317 ol decorator:154 <cycle 6> overrides.py
0.75 0.68 139 o get_data =frozen importlib._bootstrap_external=
0.73 0.01 777 W _path_stat =frozen importlib._bootstrap_external=
0.72 0.72 777 =l <built-in method posix.s... ~
0.58 0.01 236 Bl _path_is_mode_type <frozen importlib._bootstrap_external=
0.58 0.00 220 @l _path_isfile <frozen importlib._bootstrap_external>
0.56 0.00 260 o _call_with_frames_remo... <frozen importlib._bootstrap=
Q.55 0.48 33 ml <built-in method _imp.cr... ~ Parts | Callees | Call Graph | all Callees | Caller Map | Machine Code

prof.log [1] - Total Nanoseconds Cost: 3 995 561 895

snakeviz

In a Jupyter notebook:

$load ext snakeviz

= Can be embedded into a $snakeviz python code to time...
Jupyter notebook:

BOSTON
UNIVERSITY

<frozen importlib._bootstrap>:2234(_find_and_load)
0.00420 s

<frozen importlib._bootstrap>:2207(_find_and_load_unlocked)
0.00416 s

<frozen importlib._bootstrap>:1465(exec_module)
0.00355 s

Line-by-Line Profiling

= We've installed the
line_profiler library.

= To use with kernprof, a

command line tool: def row by row(A,mat):

= Decorate functions with
@profile

= Do this for each function in
row_vs_col_orig.py

from line profiler import profile

BOSTON
UNIVERSITY

Run kernprof

kernprof -1 -o line.lprof row vs col orig.py

python -m line profiler line.lprof
Timer unit: 1le-06 s
Total time: 0.204861 s
File: row vs col orig.py
Function: row by row at line 32
Line # Hits Time Per Hit Time Line Contents
32 dprofile
33 def row by row(A,x):
34 ''' compute x = A*x row-by-row '''
35 1 5.0 5.0 0.0 rows = x.shape[0]
36 10001 5605.0 0.6 2.7 for 1 in range (rows) :
37 10000 199251.0 19.9 97.3 x[i,:] = x[1i,:] * A
38 1 0.0 0.0 0.0 return x

line_profiler from within import line profiler
‘E;F));Eieer profile = line profiler.LineProfiler ()

function definitions here...

Select the functions

- : profile.add function(func a)
= Manually add the profiling to your script; brofile.add function (func b)

run as usual. profile.enable ()

v

run the rest of your program

= Qlder versions of Spyder (version 4) had # as usual...
a plug-in that loaded line_profiler results
Into the Spyder GUI. This does not exist

for Spyder V. # Turn off profiling, print the results.
profile.disable()

Print the results
profile.print stats()

BOSTON
UNIVERSITY

line_profiler from within S A
Jupyter W|th %Iprun .python code..

def looping(N,a,b,c):
for i in range (N):
my func(a,b,c)

= Option 1: Manually add to your

script as in the previous slide. %load_ext line_profiler
N = 100

= b =c¢c=1.0

)

= Option 2: Load the line-by-line
profiler in your notebook and

profile my func as it gets
profile functions. # called by looping(). The
= 21lprun is the line-by-line profiler # @profile decorator is not
needed.

$lprun —-f my func looping(N,a,b,c)

BOSTON # line profiler output prints...
UNIVERSITY

Memory Usage Profiling

= The memory_profiler library def row by row(A,mat):
IS used In a similar fashion.

= To use: = Run the script with the
= Decorate functions with memory_profiler library.
@profile = The output is printed to the
screen.

python -m memory profiler row vs col orig.py

BOSTON
UNIVERSITY

import memory profiler as mp

More ways to run..

time.sleep ((x+y+z)/3)
Run as usual

In [17]: %load_ext memory_profiler

= |Import the library and
decorate functions

%memit row_by row(scaling value,mat)

= Jupyter
F))/ . //////////////)' peak memory: 58.16 MiB, increment: .87 MiB
= Load the memory profiler

= Separate notebook files can be profiled
with Yomprun

= See this web page for detalils.

= Use $memit to getthe peak
memory used by a function
call.

BOSTON
UNIVERSITY

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

= Set mat_size = 10000. Output of: python -m memory profiler row vs col orig.py

Filename: row vs col orig.py

Line # Mem usage Increment Line Contents

40 808.535 MiB 808.535 MiB @profile

41 def col by col(A,mat) :

42 """ compute mat = A*mat col by col '''
43 808.535 MiB 0.000 MiB cols = mat.shapel[l]

44 808.535 MiB 0.000 MiB for 1 in range(cols):

45 808.535 MiB 0.000 MiB mat[:,1] = A * mat[:,1]

40 808.535 MiB 0.000 MiB return x

Whoal

Line # Mem usage Increment Line Contents

48 808.535 MiB 808.535 MiB dprofile
49 def built in(A,mat):
50 '''" A*mat using built-in element-by-element'''

IE 51 1571.477 MiB 762.941 MiB return A * mat

2X memory usage...?

def built in(A,mat):
return A * mat

= This function is calculating the
correct quantity_ mat = built in(scaling value, mat)

= The syntax creates a new /

numpy array to hold the result
which is returned.

def row by row(A,mat):
rows = mat.shape[0]
for i in range(rows):
mat[i,:] = A * mat[i, :]
return x

= This is an in-place calculation:

BOSTON
UNIVERSITY

def built in(A,mat):

. . mat[:] = A * mat
Fix and re-profile the results. return mat
Line # Mem usage Increment Line Contents
= Memory usage Is 46 808.543 MiB 808.543 MiB @profile
down: 47 def built in (A, mat) :
\b 48 808.543 MiB 0.000 MiB mat[:] = A * mat
49 808.543 MiB 0.000 MiB return mat

= Using the profiling in Spyder:

row_by row 183.57

col by col 2870.05

built_in (original version) 576.27 Interesting! More
built_in (in-place version) 764 .87 } gg{gfry usage is

Other Profiling Tools

= So far we've used: = Here are two more to
= Python’s built-in profiler consider:
= line_profiler
= memory_profiler = Intel VTune Amplifier
= Scalene

BOSTON
UNIVERSITY

Intel Vtune Amplifier

A comprehensive tool from Intel that can
analyze Python scripts and the libraries
they call for:

= Function call times

= “hotspots” — lines of code that consume
excess time

= Memory allocations
= CPU and memory utilitization

Check out their tutorials and
documentation.

Available in the intel/2024.0 module
module load intel/2024.0

vtune-guil &

BOSTON

UNIVERSITY

Project Navigator

~ I marathon
ro00ps
ro01ps
1002hs
r003hs
r004hs
r005mc
r006ps
r007hs

+ L LW Welcome r004hs ~ roos5me r006ps r007hs
[Hotspots Hotspots by CPU Utiization ~ @ NTEL VTUNE PROFILER
Analysis Configurali Coll Log y Bottom-up Caller/Callee Top-down Tree Platform marathon_list.py »

Grouping:| Function / Call Stack
Function / Call Stack
list_contains
« compare_finishers

_PyMethodDescr_Fast(
drop_gil
get_name
_PyObject_GetMethod
0S_BARESYSCALL_Di
_PyObject_FastCallKey!
disym
listiter_next
_PyObject_GenericGet4
list_dealloc
_PyFunction_FastCallK¢
PyDict_Getitem
gc_list_size
_Py_CheckFunctionRes

O: 4
k) python (TID: 7695)
@
=
=
CPU Utilization
FILTER 100.0% %

CPU Time ¥ Module

10.270s python3.7

10.270s marathon_list.py
python3.7
python3.7
marathon_list.py
python3.7
libc-dynamic.so
python3.7
libdl.so.2
python3.7
python3.7
python3.7
python3.7
python3.7
python3.7
python3.7

Function (Full)
list_contains
compare_finishers(names1, names2)
_PyMethodDescr_FastCallKeywords
drop_gil
get_name(line)
_PyObject_GetMethod
OS_BARESYSCALL_DoCallAsmintel64L
_PyObject_FastCallKeywords
disym
listiter_next
_PyObject_GenericGetAttrWithDict
list_dealloc
_PyFunction_FastCallKeywords
PyDict_Getitem
gc_list_size
_Py_CheckFunctionResuit

CPU Time

Viewing 1of1 selected stack(s)

100.0% (10.270s of 10.270s)

python3.7! - listobject.c

marathon_list.py! +0x11 - marathon
python3.7! +0xd8cd9
marathon_list.py! +0x2f - marathon_list.py:47
python3.7! +0xbfc97 - ¢
python3.7! +0xc07af - ceval.c:3960
python3.7! +0xc07df - ceval.c:524
python3.7! +0x158bce - pythonrun.c:1035
python3.7! +0x15977f - pythonrun
python3.7! +0x159939 - py
python3.7! +0x1593c1 - main.c:462
python3.7!, +0x254 - main.c:1655
python3.7! - main.c:2916
python3.7! - main.c:717

python3.7! +0x1592b5 - main.c:3491
libc.s0.6! +0xf4 - [unknown source file]
python3.7! +0x28 - start.S:103

Thread v
[Running
CPU Time
@ Spin and Overhead
@ CPU Sample
CPU Utilization
@ CPU Time
@ Spin and Overhead

Any Proces v || Any Thread

v | | Any Module v Any Utiliz: v

User functions + v |1 Functions onl v || Show inline fu v

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/introduction/tutorials-and-samples.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html#gs.16u03w

Scalene

@/\,
j SCALENE
elect a profile (.json

Time: Python | | system Memor: y: Python Memory timeline: (max: 46.2MB, growth: 0.0%)
]

hover over bars to see breakdowns; click on coLumn HeaDeRs to sort.

st/testme.py: % of time = 99.9% out of 12.7s.

MEMORY MEMORY MEMORY MEMORY LINE PROFILE
average ivi

peak timeline activity ./test/testme.py

= A new profiling tool from UMass =
Ambherst. -

= Easy to install (for Linux, .
Windows, and Mac): i

= pip install scalene

= Performs CPU, GPU, and
memory profiling.

BOSTON
UNIVERSITY

1 import numpy as np

4 from numpy import linalg as LA

FOT—
[— 26% 13 yl = [i*i for i in range
[} =TTy 63% 14 21 = [i for i in range(©, 300000 299999
def doit2(x
24 while i < 100000

z = z

z =

z =

z =

i+

2 y = np di d
1.01

The report is in HTML format and is displayed
in a web browser.

This can be called from within Jupyter
notebooks as well as from a command line.

https://github.com/plasma-umass/scalene
https://plasma-umass.org/
https://plasma-umass.org/

Profiling process

= Start with function-level = Line profiler is slower than
profiling: function timing so use where
needed.

= Spyder profiling
= cProfile with kcachegrind or
snakeviz

= |dentify problem functions.

= Use memory profiling when it
Seems necessary.
= EXcess memory usage
= Performance issues not easily solved

= LEARN THE TOOLS. with other methods.
= Read the docs!

BOSTON
UNIVERSITY

.
Algorithm example

= Sometimes we have code = Let's look at an example and
that is written poorly. see If you can identify areas
of poor performance:

= Profiling tells us where the
problems are but we still bixi_slow.py
need to find solutions.

BOSTON
UNIVERSITY

N
Outline

= Introduction

= Profiling

= Data Structures
= Generators

= Accelerators

= Syntax

BOSTON
UNIVERSITY

Data Structures

= Algorithm implementation and = Python data structures:
performance is highly dependent = List
on underlying data structures. = Dictionary
= Aka “associative array”
0o : : = Sets
= Wikipedia has a long list of
= Tuples

established data structures.

= These are sufficient to underpin a

= Find Python implementations at vast variety of algorithms.

https://pypi.org

= For manipulating numeric data
use Numpy ndarrays or Pandas
lales il Dataframes.

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/List_of_data_structures
https://pypi.org/project/memory-profiler/

Python data structures are fast when used for:

= Lists: = Dictionaries:
= Appending = Element getting/setting
= Element getting/setting = Element membership
= Removing from the end “pop()” = Element insertion
= Get length = Sets:

= Tuples (fixed lists): = Element membership
= Element getting = Set operations (unions,
= Get length Intersections, etc)

BOSTON
UNIVERSITY

N
Let's compare...

= Sample data: names of finishers = Two implementations:
of the 2015 and 2017 Boston

Marathons _
= marathon_list.py loads the data

Into a pair of lists and then

= Open files marathon_list.py and loops through them.

marathon_set.py

= marathon_set.py loads the
data into a pair of sets and
Intersects them.

= Question: Who finished both the
2015 and 2017 marathons?

BOSTON
UNIVERSITY

Data source: https://www.kaggle.com/rojour/boston-results/data

https://www.kaggle.com/rojour/boston-results/data

L
Performance

= Test each script using the = What did you find?
Spyder profiler.

= Which one is faster?
= Run it more than once —
sometimes library or other
code loading gives false
timing.

= Are the results the same?

BOSTON
UNIVERSITY

Lists

= The list lookup is ~6300x slower than
the set intersection!

A 4

= Algorithm: For each element in list A
check to see if it's in list B.

= On average you need len (B) /2 -
comparisons for every element in A.

= That's approx. len(a) * len(B) /2
operations. Each comparison is pretty
fast.

= For 26000 runners that’'s ~350M string
comparisons.

BOSTON
UNIVERSITY

Sets

Sets use a special data structure called a hash
table to store elements.

= Also used for dictionary keys.

Algorithm: For each element in set A
check to see if it's in set B.

= You need len(A) lookups into B. Each
lookup in B takes a constant time 1.

= The underlying hash function is very fast.

= Lookup speed is nearly constant regardless of the

size of the set.

= That's len(A) operations of time 1.

= For 26000 runners there are 26000 hash
comparisons.

How do you choose?

Test your code on different problem sizes.

Profile your code if testing reveals problems.

Read the documentation for available tools and libraries.
Email RCS for help.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

Understand your data
= Why were the results different?

= Sets only store unique values so
some names got dropped.

= A better set solution would use a
combination of factors to be more
robust.

= Example store this in the set as a tuple:
(name, city, country, gender)

BOSTON
UNIVERSITY

Graphs

= Some data Is naturally

understood as a graph.

= A graph of people and their social
connections to other people.

= Contact tracing during a pandemic.

= Journal articles and their authors.

= Python libraries: networkx,
igraph, graph-tool

BOSTON
UNIVERSITY

Networkx is pure Python — it
builds its graphs on a “dictionary
of dictionaries of dictionaries”

igraph is in C and C++.

https://networkx.org/documentation/latest/
https://igraph.org/
https://graph-tool.skewed.de/static/doc/index.html

Numpy and Pandas

= Numpy ndarrays are
iIntended for high speed
numeric calculations.

= Pandas dataframes are
composed of ndarrays —
similar pros & cons

BOSTON
UNIVERSITY

Optimal usage:

Use built-in numpy functions
wherever possible
= If x is an ndarray...
" numpy.abs (x) can operate on a
whole ndarray.
" math.abs (x) requires a Python
loop

Choose appropriate data types:
float32, int, etc.

Pre-allocate ndarrays to the correct
size.

Overwrite values with left-hand slice
notation.

I
Pandas

= Read the Pandas docs that = Want to use multiple cores?

give performance tips. = Have really big data sets to
process?
= Also — docs on scaling = Or both?
Pandas to large data sets. = Check out Dask and its

DataFrame implementation.

BOSTON
UNIVERSITY

https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://pandas.pydata.org/docs/user_guide/scale.html
https://www.dask.org/

Avoid numpy.append()!

x=numpy.ones(4) x— |1 (1|1|1

= This also applies to
pandas.Dataframe.append ()

new ———

Xx=numpy.append(x,2)

1171111
* numpy.append () for an ndarray
with N elements: coPy: T |
= Allocate a new ndarray of size N+1 11111
= Copy over the existing data
= Copy in the new element. copy—>| 11112

= Deallocate the old ndarray of N elements.

| s
BOSTON delete 1 1 1 1
UNIVERSITY

.
Some Numpy examples

= Open numpy_solutions.py

= Examples are provided for append(), pre-allocation, and
proper use of library calls.

BOSTON
UNIVERSITY

N
Outline

= Introduction

= Profiling

= Data Structures
= Generators
= Accelerators
= Syntax

BOSTON
UNIVERSITY

Generators

= A Python generator is a function that behaves like an iterator.

= An iterator returns every element of a collection.
= Example: a for loop iterates over the elements of a Python list.

= Generators can be used to create sequences of values one value at a
time.

BOSTON
UNIVERSITY

for x in range(1,4):

rfir]EJEB() print (x)
Output:

= The range() function in Python is a generator. ﬁ ;
3

= Try: print (range (4))
= |t won't print out any numbers — the output is not a list.
= range() returns a generator that can be iterated over to produce a sequence of integers.

BOSTON
UNIVERSITY

List comprehensions as generators

= List comprehensions are handy ways to s = [leallt imettiohmaciil
create and manipulate lists. # uppercase all the strings

//////////, caps = [L.upper() for L in strs]

= |ntermediate lists or ones that are & Print them out
created and discarded still need to for c in caps:
print (caps)

allocate memory.

> |gcaps = (L.upper() for L in strs)

= Generator syntax: use () instead of [] for g in gcaps:
= No lists are created...little additional print(g)
memory.

BOSTON : : : :
Let’s visualize this!

https://pythontutor.com/visualize.html#code=strs%20%3D%20%5B'call','me','ishmael'%5D%0A%0A%23%20uppercase%20all%20the%20strings%0Acaps%20%3D%20%5BL.upper%28%29%20for%20L%20in%20strs%5D%0A%0A%23%20Print%20them%20out%0Afor%20c%20in%20caps%3A%0A%20%20%20%20print%28c%29%0A%20%20%20%20%0A%0Agcaps%20%3D%20%28L.upper%28%29%20for%20L%20in%20strs%29%0Afor%20g%20in%20gcaps%3A%0A%20%20%20%20print%28g%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

o
Generator Functions

import random

i : - . def tripl N) :
= A generator function is written with ef triple ran(N)

the yield keyword.
for 1 in range (N):
vals=(random.random(),

= |t will generate values until it reaches random. random() ,
a return statement or throws a _ random.random())
. _ yield vals
StopIlteration exception. return # optional
. for triplet in triple ran(4):
= Every yield will return a value but print ('21.3f 21.3f 21.3f' & triplet)
the function keeps running until it
0.070 0.363 0.821
returns. # 0.668 0.705 0.235
0.384 0.817 0.071
0.033 0.303 0.591

BOSTON
Visualize!

https://pythontutor.com/render.html#code=import%20random%0A%0Adef%20triple_ran%28N%29%3A%0A%20%20%20%20'''%20Return%20N%20tuples%20of%203%0A%20%20%20%20%20%20%20%20random%20numbers.'''%0A%20%20%20%20for%20i%20in%20range%28N%29%3A%0A%20%20%20%20%20%20%20%20vals%3D%28random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20random.random%28%29%29%0A%20%20%20%20%20%20%20%20yield%20vals%20%0A%20%20%20%20return%20%23%20optional%20%0A%0Afor%20triplet%20in%20triple_ran%284%29%3A%0A%20%20%20%20print%28'%251.3f%20%251.3f%20%251.3f'%20%25%20%20triplet%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

N
Outline

= Introduction

= Profiling

= Data Structures
= Generators
= Accelerators
= Syntax

BOSTON
UNIVERSITY

Accelerators

= These are some tools that can be used in conjunction with numpy to
speed up numpy-based functions.

BOSTON
UNIVERSITY

numba

= The numba library can translate portions of your Python code and compile
It iInto machine code on demand.

= Achieves a significant speedup compared with regular Python.
= Compatible with numpy ndarrays.

= Can generate code to execute automatically on GPUs.

BOSTON
UNIVERSITY

http://numba.pydata.org/

numba from numba import njit

= The @jit decorator is used to # This will get compiled when it's
indicate which functions are #first executed. The result will be
compiled. #cached for re-use.

= Options: def average(x, vy, z):
= GPU code generation return (x + yv + z) / 3.0

= Parallelization

= Caching of compiled code
With type information this one gets

e d f d # compiled when the file is read.
an produce faster array code (floated (floated,floated,floatod))

than pure NumPy statements. def average eager(x, y, z):

return (x + yv + z) / 3.0
BOSTON
UNIVERSITY

numexpr

import numpy as np

_ _ import numexpr as ne
= Another acceleration library for

Python. a = np.arange (10)
= This one seems to be waning in popularity b = np.arange (0, 20, 2)
Plain NumPy

= Useful for speeding up specific
ndarray expressions.
= Typically 2-4x faster than plain NumPy

=2 *a+ 3 *Db

@

Numexpr
= ne.evaluate("2*a+3*b")

Q. =

= Code needs to be edited to move
ndarray expressions into the
.pr.evaluate () function:

[UL & O]
‘ BOSTON |
UNIVERSITY

https://github.com/pydata/numexpr

f2py

= Fortran code can be lightly modified and re-compiled into Python
compatible functions.

= High performance routines are relatively easy to code in Fortran 95/2003.
= f2py is part of the numpy library.

= Compiled Fortran code can be >100x faster than equivalent Python code
(even when based around numpy).

BOSTON
UNIVERSITY

Rapids.al

= “GPU Accelerated Data Science”
= Provides a number of libraries that execute on the GPU

= These are RAPIDS Workflows

= Pandas - cudf
= scipy, numpy > cupy RAPIDS Accelerated

= Dask - dask-cuda
= And lots more

_ _ NVIDIA CUDA
= Easiest install on the SCC:

= Use aconda env NV' DlA Hardware
UNIVERSITY

https://rapids.ai/
https://github.com/rapidsai
https://docs.rapids.ai/install?_gl=1*jynlww*_ga*NzUwMDUzMjMxLjE3MTg3MjUxMjI.*_ga_RKXFW6CM42*MTcxODcyNTEyMS4xLjEuMTcxODcyNTM1OC40MS4wLjA.#selector

N
Outline

= Introduction
= Profiling

= Data Structures
= Generators
= Accelerators
= Syntax

BOSTON
UNIVERSITY

.
Python Syntax

= Here are some common ways where Python syntax can result in
unintended consequences.

BOSTON
UNIVERSITY

Best to avoid this

String concatenation

a list of some strings
strs = ['a'",'b",'c",...]
S — mww
= Avoid excessive use of ‘+’ as each '+ — |for 1 in étrsr
creates a temporary string. s += 1

= Very time and memory-intensive in loops.
Less code, faster, and less memory.

B} : : : — : strs = ['a'",'b",'c",...]
|f strlngs are in a list .(or similar thing) use ~ |5 = " .5oin(strs)
the string join() function.

= Building a string in a loop? Append them g = [

to a list then jOIn() for idx,elem in enumerate(some data):
doing something...

record a message/result/etc
msg.append('Step %s complete\n' % idx)
Now concatenate

BOSTON I
msg = '1-join(nsg)

Slice Notation

= Lists:
= RHS list slicing copies lists
= LHS list slicing overwrites elements

= Numpy ndarrays:

= RHS ndarray slicing creates a Numpy
view
= LHS ndarray slicing overwrites elements

BOSTON
UNIVERSITY

[1,2,3,4]

1s a new list
x[0:2]

y -=> [1,2]

0:2] = [-5,-6]
lst two elements

of x are overwritten
X ——> [-5,-6,3,4]

= 1

| e |

H o o X K X

numpy.array([1,2,3,4])
is a view into x
x[0:2]

--> x0:2] --> [1,2]
[0:2] = [-5,-6]

1st two elements

of x are overwritten

x ——> [-5,-6,3,4]

v ——> x[0:2] --> [-5,-06]

Mok 3 X
oK

NoO.
x=]
The del command 00
for i in range(N):
))) f 13 M) :
= Temporary variables in loops — avoid > ;OlEO;ZEEfég)that
the de1 command to clear out lists. # adds stuff to x

sum += sum(x)

= The de1 works by marking the elements of
clear out x

list x for deletion at some later time, not

when the de1 is called. del x[:]
= The cleared elements of x aren’t cleaned

up until x goes out of scope. Yes.
= This can result in a surprising amount of Sum = (.)'O

. for i in range(N):
memory consumption! x = []
L x =
////////' for j in range(M):
= Instead re-declare x with each inner # do something that
_ _ # adds stuff to x

loop iteration. sum 4= sum(x)

BOSTON
UNIVERSITY

Open files with with import glob

import os
files = glob.glob(os.path.join(img dir,'*.dat'"))

Do something with each data file
= The Python with command when for datfile in files:

opening files will auto-handle the dat=open(datfile,'r")

)) some func(dat.read())

C|05|ng Of the flle- # If there are enough files and you
don't call this:

dat.close ()

this loop WILL CRASH when you hit
your open file limit.

H= H= FH= H=

= The operating system limits the
Life is better with "with" :

number of files that can be for datfile im files:
opened...it's easy to forget a file with open(datfile,'r') as dat:
some func(dat.read())
'Close() Ca”' # this guarantees the open file is

closed when this code block ends
dat.close() ## this is now optional.

BOSTON
UNIVERSITY

Python’s itertools and functools libraries

= These two libraries are full of highly useful tools for manipulating Python
functions and data structures.

= Well worth checking out!

= |tertools: = functools:
“The module standardizes a core set of fast, memory = “The functools module is for higher-order functions:
efficient tools that are useful by themselves or in functions that act on or return other functions. In
combination. Together, they form an “iterator algebra” general, any callable object can be treated as a
making it possible to construct specialized tools function for the purposes of this module.”

succinctly and efficiently in pure Python.”

BOSTON
UNIVERSITY

https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/functools.html

End-of-course Evaluation Form

= Please visit this page and fill in the evaluation form for this course.

= Your feedback is highly valuable to the RCS team for the improvement
and development of tutorials.

= |f you visit this link later please make sure to select the correct tutorial —
name, time, and location.

http://scv.bu.edu/survey/tutorial _evaluation.html

BOSTON
UNIVERSITY

http://scv.bu.edu/survey/tutorial_evaluation.html

	Slide 1: Python Optimization
	Slide 2: Run Spyder
	Slide 3: Outline
	Slide 4: Optimization
	Slide 5: Why Bother to Optimize?
	Slide 6: Some words of wisdom, lightly paraphrased
	Slide 7: Outline
	Slide 8: Profiling
	Slide 9: Profiling Drawbacks
	Slide 10: Python Profiling Tools
	Slide 11: Additional Profiling Tools
	Slide 12: A simple sample code
	Slide 13: Profiling: manual timing
	Slide 14: Function Decorators
	Slide 15: Better Manual Profiling
	Slide 16: Spyder Timing
	Slide 17: Spyder Timing
	Slide 18: Profiling: Using the Python Profiler
	Slide 19: Spyder Profiling Output
	Slide 20: Timing and Profiling in a Jupyter Notebook
	Slide 21: Command Line Python Profiling
	Slide 22: Python Profiling Tools
	Slide 23: kcachegrind
	Slide 24: snakeviz
	Slide 25: Line-by-Line Profiling
	Slide 26: Run kernprof
	Slide 27: line_profiler from within Spyder
	Slide 28: line_profiler from within Jupyter with %lprun
	Slide 29: Memory Usage Profiling
	Slide 30: More ways to run…
	Slide 31
	Slide 32: 2x memory usage…?
	Slide 33: Fix and re-profile the results.
	Slide 34: Other Profiling Tools
	Slide 35: Intel Vtune Amplifier
	Slide 36: Scalene
	Slide 37: Profiling process
	Slide 38: Algorithm example
	Slide 39: Outline
	Slide 40: Data Structures
	Slide 41: Python data structures are fast when used for:
	Slide 42: Let’s compare…
	Slide 43: Performance
	Slide 44: Lists
	Slide 45: Sets
	Slide 46: Understand your data
	Slide 47: Graphs
	Slide 48: Numpy and Pandas
	Slide 49: Pandas
	Slide 50: Avoid numpy.append()!
	Slide 51: Some Numpy examples
	Slide 52: Outline
	Slide 53: Generators
	Slide 54: range()
	Slide 55: List comprehensions as generators
	Slide 56: Generator Functions
	Slide 57: Outline
	Slide 58: Accelerators
	Slide 59: numba
	Slide 60: numba
	Slide 61: numexpr
	Slide 62: f2py
	Slide 63: Rapids.ai
	Slide 64: Outline
	Slide 65: Python Syntax
	Slide 66: String concatenation
	Slide 67: Slice Notation
	Slide 68: The del command
	Slide 69: Open files with with
	Slide 70: Python’s itertools and functools libraries
	Slide 71: End-of-course Evaluation Form

