
Numerical Python

v0.4

Research Computing Services

IS & T

Python’s strengths

▪ Python is a general purpose language.
▪ In contrast with R or Matlab which started out as specialized languages

▪ Python lends itself to implementing complex or specialized algorithms for

solving computational problems.

▪ It is a highly productive language to work with that’s been applied to

hundreds of subject areas.

Extending its Capabilities

▪ However…for number crunching some aspects of the language are not

optimal:
▪ Runtime type checks

▪ No compiler to analyze a whole program for optimizations

▪ General purpose built-in data structures are not optimal for numeric calculations

▪ “regular” Python code is not competitive with compiled languages (C, C++,

Fortran) for numeric computing.

▪ The solution: specialized libraries that extend Python with data structures

and algorithms for numeric computing.
▪ Keep the good stuff, speed up the parts that are slow!

NumPy

▪ NumPy provides optimized data structures and basic routines for

manipulating multidimensional numerical data.

▪ Mostly implemented in compiled C code.

▪ NumPy underlies many other numeric and algorithm libraries used

throughout the Python software ecosystem.

Source: Continuum Analytics

Ndarray – the basic NumPy data type

▪ NumPy ndarray’s are:

▪ Typed

▪ Fixed in size

▪ Fixed in dimensionality

▪ An ndarray can be constructed from:

▪ Conversion from a Python list, set, tuple, or similar data structure

▪ NumPy initialization routines

▪ Copies or computations with other ndarray’s

▪ NumPy-based functions as a return value

ndarray vs list

▪ List:

▪ General purpose

▪ Untyped

▪ 1 dimension

▪ Resizable

▪ Add/remove elements anywhere

▪ Accessed with [] notation and

integer indices

▪ Ndarray:

▪ Intended to store and process

(mostly) numeric data

▪ Typed

▪ N-dimensions

▪ Chosen at creation time

▪ Fixed size

▪ Chosen at creation time

▪ Accessed with [] notation and

integer indices

Make some ndarrays

▪ Let’s play around with ndarrays for a

bit…

import numpy as np

Make a list

nums = [1,2.0, -1.3]

Convert it to a numpy ndarray

arr = np.array(nums)

print(f'A numpy array: {arr}')

Make another list

nums2 = [-2.3, -4, 6]

make a list of lists - get a

2D array

arr2 = np.array([nums,nums2])

Print a list of lists

print(f'A list of lists:\n

{[nums,nums2]}')

Print a 2D array

print(f'A numpy 2D array:\n {arr2}')

ndarray math

▪ By default operators work

element-by-element

▪ These are executed in

compiled C code.

import numpy as np

a = np.array([1,2,3,4])

b = np.array([4,5,6,7])

c = a / b

c is an ndarray

print(type(c))

<class 'numpy.ndarray’>

c = a * b

c → array([4, 10, 18, 28])

a + b

array([5, 7, 9, 11])

a - b

array([-3, -3, -3, -3])

a / b

array([0.25, 0.4, 0.5, 0.57142857])

Broadcasting

-2 * a

array([2, 4, 6, 8])

Combinations...

-2 * a + b**2

array([14, 21, 30, 41])

▪ Vectors are applied

row-by-row to matrices

▪ The length of the vector

must match the width of

the row.

a = np.array([10,20,30,40])

c = np.array([[1,2,3,4],

[4,5,6,7],

[1,1,1,1],

[2,2,2,2]])

a + c

array([[3, 4, 5, 6],

[6, 7, 8, 9],

[3, 3, 3, 3],

[4, 4, 4, 4]])

ndarray sizes & reshaping

▪ How many elements?

a = np.array([10,20,30,40])

c = np.array([[1,2,3,4],

[4,5,6,7],

[1,1,1,1],

[2,2,2,2]])

The size is a property, not a

function call.

a.size

4

c.size

16

a.shape

(4,)

c.shape

(4,4)

▪ What are the

dimensions?

d = np.array([1,2,3,4,5,6,7,8,9])

d.shape

(9,)

d.size

9

d_2d = d.reshape((3,3))

Or: d_2d = np.reshape(d,(3,3))

d_2d.shape

(3,3)

d_col = d.reshape((1,9))

d_col.shape

(1,9)

Transpose it

d_row = d_col.T

d_row.shape

(9,1)

Make it 3d

d_3d = d.reshape((1,3,3))

d_3d.size

9

d_3d.shape

(1,3,3)

▪ reshape() lets us change the dimensions

without changing the size.

Vectors + Matrices, again.

▪ A 1-D vector is always treated

as a row.

▪ If you want to do operations by

columns, make the vector a 2D

array where one dimension is of

size 1.

make this 2D, 4 rows, 1 column

a = np.array([10,20,30,40]).reshape((4,1))

c = np.array([[1,2,3,4],

[4,5,6,7],

[1,1,1,1],

[2,2,2,2]])

a + c

array([[11, 12, 13, 14],

[24, 25, 26, 27],

[31, 31, 31, 31],

[42, 42, 42, 42]])

Transpose A, now it'll add row-by-row

a.T + c

#array([[11, 22, 33, 44],

[14, 25, 36, 47],

[11, 21, 31, 41],

[12, 22, 32, 42]])

Linear algebra multiplication

▪ Vector/matrix multiplication can

be done using the dot(), cross()

functions, or @ operator

▪ There are many other linear

algebra routines!

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

a = np.array([[1, 0],

[0, 1]])

b = np.array([[4, 1],

[2, 2]])

np.dot(a, b) # --> array([[4, 1],

[2, 2]])

a @ b # --> array([[4, 1],

[2, 2]])

np.cross(a,b)# --> array([1, -2])

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

An Aside on Computer Memory…

▪ All of the memory in a computer is accessed (and connected

electronically) as a 1D array. Any byte can be read via its unique address.

▪ When a program reads data from memory the fastest way to do so is to

read data from adjacent addresses.
▪ Computer memory hardware is optimized for this access pattern.

▪ Let’s contrast how Python lists and ndarrays organize themselves in

memory…

All the bytes in a row …

Each has a unique address

▪ A Python list mimics a linked list data structure when used
▪ It’s implemented as a resizable array of pointers to Python objects for performance reasons.

▪ x[1] → get the pointer (memory address) at index 1 → get the Python object in

memory at that address → get the value from the object → return ‘b’

List Implementation x = ['a','b',3.14]

x

Pointer to a

Python object

Pointer to a

Python object

Pointer to a

Python object

'a'

'b'

3.14

Allocated

anywhere in

memory

Allocated as a continuous

block of memory

https://en.wikipedia.org/wiki/Linked_list

▪ The basic data type is a class called ndarray.

▪ The object has:
▪ a data that describes the array (data type, number of dimensions, number of elements, memory

format, etc.)

▪ A contiguous array in memory containing the data.

▪ y[1]→ check the ndarray data type → retrieve the value at offset 1 in the data array

→ return 2

NumPy ndarray

import numpy as np

Initialize a NumPy array

from a Python list

y = np.array([1,2,3])

https://docs.scipy.org/doc/numpy/reference/arrays.html

y

Data description

(integer, 3 elements, 1-D)

1 2 3

Values are

physically

adjacent in

memory

dtype

▪ Every ndarray has a dtype, the type of data

that it holds.

▪ Current list of data types.

▪ This is used to interpret the block of data

stored in the ndarray.

▪ Can be assigned at creation time:

▪ Conversion from one type to another is

done with the astype() method:

a = np.array([1,2,3])

a.dtype

dtype('int32')

b = a.astype('float64')

b.dtype

dtype('float64')

c = np.array([-1,4,124],dtype='int8')

c.dtype

dtype('int8')

https://numpy.org/doc/stable/user/basics.types.html
https://numpy.org/doc/stable/user/basics.types.html

ndarray from numpy initialization

▪ There are a number of initialization routines. They are mostly copies of

similar routines in Matlab.

▪ These share a similar syntax:

▪ zeros – everything initialized to zero.

▪ ones – initialize elements to one.

▪ empty – do not initialize elements

▪ identity – create a 2D array with ones on the diagonal and zeros elsewhere

▪ full – create an array and initialize all elements to a specified value

▪ Read the docs for a complete list and descriptions.

function_name([size of dimensions list], opt. dtype…)

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

ndarray from a list

▪ The numpy function array creates a new array from any data structure

with array like behavior (other ndarrays, lists, sets, etc.)

▪ Read the docs!

▪ Creating an ndarray from a list does not change the list.

▪ Often combined with a reshape() call to create a multi-dimensional array.

▪ Open the file ndarray_basics.py in Spyder so we can check out some

examples.

x = [1,2,3]

y = np.array(x)

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html

ndarray indexing

▪ ndarray indexing is similar to

Python lists, strings, tuples, etc.

▪ Index with integers, starting from

zero.

▪ Indexing N-dimensional arrays,

just use commas:
array[i,j,k,l] = 42

oneD = np.array([1,2,3,4])

twoD = oneD.reshape([2,2])

twoD → array([[1, 2],

[3, 4]])

index from 0

oneD[0] → 1

oneD[3] → 4

-index starts from the end

oneD[-1] → 4

oneD[-2] → 3

For multiple dimensions use a comma

matrix[row,column]

twoD[0,0] → 1

twoD[1,0] → 3

ndarray slicing
▪ Syntax for each dimension (same rules

as lists):

▪ start:end:step

▪ start: → from starting index to end

▪ :end → start from 0 to end (exclusive of end)

▪ : → all elements.

▪ Slicing an ndarray does not make a

copy, it creates a view to the original

data.

▪ Slicing a Python list creates a copy.

Look at the file slicing.py

y = np.arange(50,300,50)

y --> array([50, 100, 150, 200, 250])

y[0:3] --> array([50, 100, 150])

y[-1:-3:-1] --> array([250, 200])

x = np.arange(10,130,10).reshape(4,3)

x --> array([[10, 20, 30],

[40, 50, 60],

[70, 80, 90],

[100, 110, 120]])

1-D returned!

x[:,0] --> array([10, 40, 70, 100])

2-D returned!

x[2:4,1:3] --> array([[80, 90],

[110, 120]])

ndarray slicing assignment

▪ Slice notation on the left hand side of an = sign overwrites elements of an ndarray.

Can be combined with right hand slicing.

y = np.arange(50,300,50)

y --> array([50, 100, 150, 200, 250])

y[0:3] = -1

y --> array([-1, -1, -1, 200, 250])

y[0:8] = -1

NO ERROR!

y --> array([-1, -1, -1, -1, -1])

x = np.array([10,20,30,40,50,60])

y[0:2] = x[3:5]

y --> array([40, 50, -1, -1, -1])

ndarray addressing with an ndarray

▪ Ndarray’s can be used to

address/index another ndarray.

▪ Use integer or Boolean values.

▪ Remember: this still returns a view.

a=np.linspace(-1,1,5)

a --> [-1. , -0.5, 0. , 0.5, 1.]

b=np.array([0,1,2])

a[b] # --> array([-1. , -0.5, 0.])

c = np.array([True, False, True, True,

False])

Boolean indexing returns elements

where True

a[c] # --> array([-1. , 0. , 0.5])

numpy.where

▪ Similar to find in Matlab.

▪ Syntax:

numpy.where(condition, [x,y])

▪ Condition: some Boolean condition

applied to an ndarray

▪ x, y: Optional variables to choose
from. x is for condition == True,

y is for condition == False.

▪ All three arguments must apply to

ndarray’s.

a=np.linspace(-1,1,5)

a --> [-1. , -0.5, 0. , 0.5, 1.]

Returns a TUPLE containing the INDICES where

the condition is True!

np.where(a <= 0)

--> (array([0, 1, 2], dtype=int64),)

np.where(a <= 0, -a, 20*a)

--> array([1. , 0.5, -0. , 10. , 20.])

Random Numbers

▪ First…the old school way as you see it all the time in existing code.

▪ Library: numpy.random

▪ Library of functions for random number generation

▪ Ex:

▪ numpy.random.random() - generate random numbers from a

uniform distribution

▪ numpy.random.shuffle() – randomly re-order an ndarray

https://numpy.org/doc/stable/reference/random/legacy.html#functions-in-numpy-random

Random Numbers the right way

▪ Still part of numpy.random

▪ Create a random generator object

▪ The default algorithm is called PCG64. There

are others available.

▪ You can seed it to get a reproducible

sequence

▪ Use the object to access functions involving

randomness.

▪ This bit of code is in the file sample_rng.py

Make an RNG object with a random seed

rng = np.random.default_rng()

an ndarray of the integers 0-5

a = np.arange(6)

shuffle a in place

rng.shuffle(a)

a is now something like:

array([3, 0, 2, 4, 1, 5])

Create an rng object from a specified seed

rng2 = np.random.default_rng(seed=100)

the RNG sequence is deterministic, so

everyone using the same seed and algorithm

gets the same sequence. Get 4 numbers

from a Gaussian distribution

rng2.normal(size=4)

array([-1.15754965, 0.2897558 , 0.78085407, 0.54397364])

Simulate rolling dice

Check the docs:

help(rng.integers)

Get some random integers 1-5

dice_roll = rng.integers(1,high=6,size=10)

no we want 1-6 for a 6-sided die,

so add the endpoint argument

dice_roll = rng.integers(1,high=6,size=10,endpoint=True)

https://numpy.org/doc/stable/reference/random/generator.html
https://numpy.org/doc/stable/reference/random/bit_generators/index.html

ndarray memory usage

▪ The memory allocated by an ndarray:
▪ Storage for the data: N elements * bytes-per-element

▪ 4 bytes for 32-bit integers, 8 bytes for 64-bit floats (doubles), 1 byte for 8-bit characters etc.

▪ A small amount of memory is used to store info about the ndarray (~few dozen bytes)

▪ Data storage is compatible with external libraries
▪ C, C++, Fortran, or other external libraries can use the data allocated in an ndarray directly without

any conversion or copying.

ndarray memory layout

▪ The memory layout (C or Fortran

order) can be set:
▪ This can be important when dealing with

external libraries written in R, Matlab, etc.

▪ Row-major order: C, C++, Java, C#,

and others

▪ Column-major order: Fortran, R,

Matlab, and others

▪ See here for more detail

X = np.ones([3,5],order='F')

OR...

Y is C-ordered by default

Y = np.ones([3,5])

Z is a F-ordered copy of Y

Z = np.asfortranarray(Y)

https://en.wikipedia.org/wiki/Row-_and_column-major_order

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/

ndarray memory layout

▪ For row-major ordering the rightmost

index accesses values in adjacent

memory.

▪ The opposite is true for column-major

ordering.

▪ This can have a significant impact on

performance when accessing

ndarrays with for loops or built-in

functions like numpy.sum()

Y is C-ordered by default

Y = np.ones([2,3,4])

For loop indexing:

total=0.0

for i in range(Y.shape[0]):

for j in range(Y.shape[1]):

for k in range(Y.shape[2]):

total += Y[i,j,k]

X is Fortan-ordered

X = np.ones([2,3,4], order='F')

For loop indexing:

total=0.0

for i in range(X.shape[2]):

for j in range(X.shape[1]):

for k in range(X.shape[0]):

total += X[k,j,i]

Look at the file row_vs_col_timing.py

NumPy I/O

▪ When reading files you can use standard Python, use lists, allocate

ndarrays and fill them.

▪ Or use any of NumPy’s I/O routines that will directly generate ndarrays.

▪ The best way depends on the structure of your data.

▪ If dealing with structured numeric data (tables of numbers, etc.) NumPy is

easier and faster.

▪ Docs: https://docs.scipy.org/doc/numpy/reference/routines.io.html

https://docs.scipy.org/doc/numpy/reference/routines.io.html

Numpy docs

▪ As numpy is a large library we can only cover the basic usage here

▪ Let’s look that the official docs:

https://docs.scipy.org/doc/numpy/reference/index.html

▪ As an example, computing an average:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean

https://docs.scipy.org/doc/numpy/reference/index.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean

Some numpy file reading options

▪ .npz and .npy file formats (cross-platform

compatible) :
▪ .npy files store a single NumPY variable in a binary

format.

▪ .npz files store multiple NumPy Variables in a file.

▪ h5py is a library that reads HDF5 files into

ndarrays

▪ The I/O routines allow for flexible reading from

a variety of text file formats

numpy.save # save .npy

numpy.savez # save .npz

ditto, with compression

numpy.savez_compressed

numpy.load # load .npy

numpy.loadz # load .npz

Tutorial:
https://docs.scipy.org/doc/nu
mpy/user/basics.io.html

https://docs.scipy.org/doc/numpy/user/basics.io.html

NumPy I/O example

▪ Read in a data file from a set of ocean weather
buoys.
▪ File: buoy_data.csv

▪ 18 columns. 1st column are dates, the rest are numeric data

for different buoys.

▪ Some rows have dates but are missing data points in some

columns.

▪ Use the most flexible NumPy file reader,

genfromtxt.

▪ Task: read temperature data into a 2D ndarray,

clean up missing data, plot the data.

Look at the file numpy_io.py

A01

B01

https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html

SciPy

▪ SciPy builds on top of

NumPy.

▪ Ndarrays are the basic data

structure used.

▪ Libraries are provided for:

▪ Comparable to Matlab

toolboxes.

• physical constants and conversion factors
• hierarchical clustering, vector quantization, K-

means
• Discrete Fourier Transform algorithms
• numerical integration routines
• interpolation tools
• data input and output
• Python wrappers to external libraries
• linear algebra routines
• miscellaneous utilities (e.g. image reading/writing)
• various functions for multi-dimensional image

processing
• optimization algorithms including linear

programming
• signal processing tools
• sparse matrix and related algorithms
• KD-trees, nearest neighbors, distance functions
• special functions
• statistical functions

scipy.io

▪ I/O routines support a wide variety of file formats:

Software Format

name

Read? Write?

Matlab .mat Yes Yes

IDL .sav Yes No

Matrix Market .mm Yes Yes

Netcdf .nc Yes Yes

Harwell-Boeing

(sparse matrices)

.hb Yes Yes

Unformatted Fortran files .anything Yes Yes

Wav (sound) .wav Yes Yes

Arff

(Attribute-Relation File Format)

.arff Yes No

https://docs.scipy.org/doc/scipy/reference/io.html

Using SciPy

▪ Think about your code and what sort of algorithms you’re using:
▪ Integration, statistical sampling, linear algebra, image processing, etc.

▪ See if an appropriate algorithm exists in SciPy before trying to write

your own.

▪ Read the docs – many functions have large numbers of optional

arguments.

▪ Understand the algorithms!

Example: Fit a line with SciPy

▪ There are many ways to fit equation parameters to data in NumPy and

SciPy

▪ scipy.stats.linregress: Calculate a regression line

▪ Open the example linregress.py

▪ This demonstrates calling the function and extracting all the info it

returns.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.linregress.html#scipy.stats.linregress

Example: scipy.optimize.minimize

▪ Finds the minimum value of a function.

▪ You provide the function as an argument

to minimize.

▪ Using functions as arguments is a

common pattern in scipy.

▪ Open scipy_minimize.py

https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

𝑦 = 3𝑥2 + 𝑥 − 1

https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

OpenCV

▪ The Open Source Computer Vision Library
▪ They have a Python tutorial

▪ When added to your Python setup:

▪ import cv2

▪ Highly optimized and mature C++ library

usable from C++, Java, and Python.

▪ Cross platform: Windows, Linux, Mac OSX,

iOS, Android

▪ OpenCV data in Python is implemented with

ndarrays

• Image Processing
• Image file reading and writing
• Video I/O
• High-level GUI
• Video Analysis
• Camera Calibration and 3D Reconstruction
• 2D Features Framework
• Object Detection
• Deep Neural Network module
• Machine Learning
• Clustering and Search in Multi-Dimensional Spaces
• Computational Photography
• Image stitching

https://www.opencv.org/
https://docs.opencv.org/4.7.0/d6/d00/tutorial_py_root.html

OpenCV vs SciPy

▪ For imaging-related operations and many linear algebra functions there is a lot of overlap

between these two libraries.

▪ OpenCV functions are frequently faster, sometimes significantly so.

▪ The OpenCV Python API uses NumPy ndarrays, making OpenCV algorithms compatible

with SciPy and other libraries.

https://docs.opencv.org/4.0.1/d6/d00/tutorial_py_root.html

OpenCV vs SciPy

▪ A simple benchmark: Gaussian and median

filtering a 1024x671 pixel image of the CAS

building.

▪ Gaussian: radius 5, median: radius 9.

▪ Timing: 2.4 GHz Xeon E5-2680 (Sandybridge)

Operation Function Time (msec) OpenCV speedup

Gaussian
scipy.ndimage.gaussian_filter

cv2.GaussianBlur

85.7

23.2

3.7x

Median
scipy.ndimage.median_filter

cv2.medianBlur

1,780

79.2

22.5x

See: image_bench.py

https://commons.wikimedia.org/wiki/File:Boston_University_College_of_Arts_and_Sciences.jpg

End-of-course Evaluation Form

▪ Please visit this page and fill in the evaluation form for this course.

▪ Your feedback is highly valuable to the RCS team for the improvement

and development of tutorials.

▪ If you visit this link later please make sure to select the correct tutorial –

name, time, and location.

http://rcs.bu.edu/eval

http://rcs.bu.edu/eval

	Slide 1: Numerical Python
	Slide 2: Python’s strengths
	Slide 3: Extending its Capabilities
	Slide 4: NumPy
	Slide 5
	Slide 6: Ndarray – the basic NumPy data type
	Slide 7: ndarray vs list
	Slide 8: Make some ndarrays
	Slide 9: ndarray math
	Slide 10
	Slide 11: ndarray sizes & reshaping
	Slide 12: Vectors + Matrices, again.
	Slide 13: Linear algebra multiplication
	Slide 14: An Aside on Computer Memory…
	Slide 15: List Implementation
	Slide 16: NumPy ndarray
	Slide 17: dtype
	Slide 18: ndarray from numpy initialization
	Slide 19: ndarray from a list
	Slide 20: ndarray indexing
	Slide 21: ndarray slicing
	Slide 22: ndarray slicing assignment
	Slide 23: ndarray addressing with an ndarray
	Slide 24: numpy.where
	Slide 25: Random Numbers
	Slide 26: Random Numbers the right way
	Slide 27: ndarray memory usage
	Slide 28: ndarray memory layout
	Slide 29: ndarray memory layout
	Slide 30: NumPy I/O
	Slide 31: Numpy docs
	Slide 32: Some numpy file reading options
	Slide 33: NumPy I/O example
	Slide 34: SciPy
	Slide 35: scipy.io
	Slide 36: Using SciPy
	Slide 37: Example: Fit a line with SciPy
	Slide 38: Example: scipy.optimize.minimize
	Slide 39: OpenCV
	Slide 40: OpenCV vs SciPy
	Slide 41: OpenCV vs SciPy
	Slide 42: End-of-course Evaluation Form

