
Introduction to Python

Part 1

v0.9

Research Computing Services

Information Services & Technology



About You

▪ Working with Python already?

▪ Have you used any other programming languages?

▪ Why do you want to learn Python?



RCS Team and Expertise

▪ Our Team

▪ Scientific Programmers

▪ Systems Administrators

▪ Graphics/Visualization Specialists

▪ Account/Project Managers

▪ Special Initiatives (Grants)

▪ Maintains and administers the Shared 

Computing Cluster

▪ Located in Holyoke, MA

▪ ~23,000 CPUs running Linux

▪ Consulting Focus:

▪ Bioinformatics

▪ Data Analysis / Statistics

▪ Molecular modeling

▪ Geographic Information Systems

▪ Scientific / Engineering Simulation

▪ Visualization

▪ CONTACT US:  help@scc.bu.edu

http://rcs.bu.edu/
mailto:help@scc.bu.edu


Python on the SCC

▪ There is documentation for using Python on the SCC on the RCS website.

▪ Use the module system to find Python:

https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/anaconda/


Python on the SCC

▪ Python can be used in qsub jobs by loading a Python module:

#!/bin/bash -l

#$ -P myproj

#$ -m ea

#$ -N PythonJob

module load python3/3.10.5

python myscript.py arg1 arg2



Getting Python for Yourself:  Anaconda

▪ The most popular setup for personal computers

▪ https://www.anaconda.com/download/

▪ Anaconda is a packaged set of programs including the Python language, 

a huge number of libraries, and several tools.

▪ These include the Spyder development environment and Jupyter notebooks.

▪ Anaconda can be used on the SCC, with some setup required.

https://www.anaconda.com/download/
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/anaconda/


Spyder – a Python development environment

▪ Pros:
▪ Faster development

▪ Easier debugging!

▪ Helps organize code

▪ Cons
▪ Learning curve

▪ Can add complexity to smaller 

problems



The Spyder IDE

file editor

Python console

Variable and file explorer



Tutorial Outline – Part 1

▪ What is Python?

▪ Operators

▪ Variables

▪ Functions

▪ Lists



Some History

▪ “Over six years ago, in December 1989, I was looking for a "hobby" 

programming project that would keep me occupied during the week 

around Christmas…I chose Python as a working title for the project, being 

in a slightly irreverent mood (and a big fan of Monty Python's Flying 

Circus).”
–Python creator Guido Van Rossum, from the foreward to Programming Python (1st ed.)

▪ Goals: 
▪ An easy and intuitive language just as powerful as major competitors

▪ Open source, so anyone can contribute to its development

▪ Code that is as understandable as plain English

▪ Suitability for everyday tasks, allowing for short development times



Compiled Languages   (ex. C++ or Fortran)



Interpreted Languages   (ex. Python or R)

Source code files

prog.py

math.py

Python interpreter 
bytecode 
conversion

Python interpreter: 
follows bytecode 

instructions

python prog.py

▪ A lot less work is done to get a program to start running compared with compiled 

languages!

▪ Python programs start running immediately – no waiting for the compiler to finish.

▪ Bytecodes are an internal representation of the text program that can be efficiently run by 

the Python interpreter.

▪ The interpreter itself is written in C and is a compiled program.



The Python Prompt
▪ The standard Python prompt looks like this:

▪ The IPython prompt in Spyder looks like this:

▪ IPython adds some handy behavior around the standard Python prompt.



Operators

▪ Python supports a wide variety of operators which act like functions, i.e.

they do something and return a value:
▪ Arithmetic:           +    - *    /   //   %     ** 

▪ Logical:               and   or   not  

▪ Comparison:       >       <        >=     <=        !=      ==

▪ Assignment:        =

▪ Bitwise:               &    |    ~    ^   >>    <<

▪ Identity:              is       is not

▪ Membership:      in     not in 



Try Python as a calculator

▪ Go to the Python prompt.

▪ Try out some arithmetic operators:

+    - *    /  //   %   **   ==  ( ) and 

▪ Can you identify what they all do?



Operators

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division ( 25 / 4 = 6.25 )

// Integer Division ( 25 // 4 = 6 )

% Remainder (aka modulus)

** Exponentiation

== Equals

and    or    not Boolean operations

>    <   <=   >= Comparison



More Operators

▪ Try some comparisons and Boolean operators. True and False are the 

keywords indicating those values:



Comments

▪ # is the Python comment character.  On 

any line everything after the # character 

is ignored by Python.

▪ There is no multi-line comment 

character as in C or C++.

▪ An editor like Spyder makes it very easy 

to comment blocks of code or vice-

versa. Check the Edit menu



Spyder Cells

▪ This is a Spyder-specific 

tool for helping you to run

snippets of code in the file 

editor.

▪ Every time the characters 

#%% are seen Spyder 

treats that section as a 

“cell”.

▪ Right-click to run a single

cell.
▪ Or use the keyboard shortcuts

Note: A “right-click” on a Mac is 

“click while holding down the 

Control key”

One cell



Variables

▪ Variables are assigned values using the = operator

▪ In the Python console, typing the name of a variable 

prints its value
▪ Not true in a script!

▪ Visualize Assignment

▪ Variables can be reassigned at any time

▪ Variable type is not specified

▪ Types can be changed with a reassignment

https://pythontutor.com/visualize.html#code=y%20%3D%20%5B2,3,4%5D%0Ax%20%3D%203%0Ay%20%3D%20'abc'&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


Variables cont’d

▪ Variables refer to a value stored in memory and are created when first 

assigned

▪ Variable names:
▪ Must begin with a letter (a - z, A - Z) or underscore  _ 

▪ Other characters can be letters, numbers or _

▪ Are case sensitive:  capitalization counts!

▪ Can be any reasonable length

▪ Assignment can be done en masse:   

x = y = z = 1

▪ Multiple assignments can be done on one line:  

x, y, z = 1, 2.39, 'cat'

Try these out!



Variable Data Types

▪ Python determines data types for variables based on the context

▪ The type is identified when the program runs, using dynamic typing

▪ Compare with compiled languages like C++ or Fortran, where types are identified by 

the programmer and by the compiler before the program is run. 

▪ Run-time typing is very convenient and helps with rapid code development



Variable Data Types

x = complex(3,1) x = 3+1j

Numbers Integers and floating point (64-bit)

Complex numbers x = complex(3,1)  or    x = 3+1j

Strings "cat"  or       'dog'

Boolean True or    False

Lists, dictionaries, sets, and tuples These hold collections of values

Specialty types Files, network connections, etc.

Custom types User- or library-defined types using 

Python classes



Variable modifying operators

▪ Some additional arithmetic operators that modify variable values:

▪ The += operator is by far the most used of these.

Operator Effect Equivalent to…

x += y Add the value of y to x x = x + y

x -= y Subtract the value of y from x x = x - y

x *= y Multiply the value of x by y x = x * y

x /= y Divide the value of x by y x = x / y



Strings

▪ Strings are a basic data type in Python.

▪ Indicated using pairs of single '' or 

double "" quotes.

▪ Multiline strings use a triple set of 

quotes (single or double) to start and 

end them.

25



Functions

▪ Functions are used to create pieces of code that can be used in a 

program or in many programs. 

▪ The use of functions is to logically separate a program into discrete 

computational steps.

▪ Programs that make heavy use of function definitions tend to be easier to:

▪ develop

▪ debug

▪ maintain

▪ understand



Python functions

▪ The return value can be any Python type

▪ If the return statement is omitted a special None value is still returned.

▪ The arguments are optional but the parentheses are required!

▪ Functions must be defined before they can be called.

Keyword def

Function name

Optional comma-separated 

list of arguments (incoming 

variables)

A code block

Optional return statement



Sample Built-In Functions

▪ Let’s try a few useful built-in functions…

▪ print()

▪ dir()

▪ type()

▪ help()



Visualize a Function Call

▪ Here’s a simple function call to calculate the equation of a line.

y  = A * x + B

x

y

https://pythontutor.com/visualize.html#code=def%20line%28x,%20A,%20B%29%3A%0A%20%20%20%20'''%20Compute%20the%20equation%20of%20a%20line%20'''%0A%20%20%20%20y%20%3D%20A%20*%20x%20%2B%20B%0A%20%20%20%20return%20y%0A%20%20%20%20%0A%23%20Call%20our%20function%20with%20a%20few%20values.%0Aslope%20%3D%200.5%0Aintercept%20%3D%20-1.0%0A%0Ay1%20%3D%20line%282.6667,%20slope,%20intercept%29%0A%0Ax2%20%3D%20-0.5%0Ay2%20%3D%20line%28x2,%20slope,%20intercept%29%0A%0Aprint%282.6667,%20y1%29%0Aprint%28x2,%20y2%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


Write a Function

▪ In Spyder’s editor:

▪ Define a function called mathcalc that takes 3 numbers as arguments and returns 

their sum divided by their product.

▪ Save the file and run it. Here’s some sample output to check your result.

mathcalc(1,2,3) → returns 1.0

mathcalc(4, -2.5, 3.0) → returns -0.15



Which code sample is easier to read?

▪ C: or

▪ Matlab:

or

float avg(int a, int b, int c)

{

float sum = a + b + c ;

return sum / 3.0 ;

}

float avg(int a, int b, int c){

float sum = a + b + c ;

return sum / 3.0 ;}

function a = avg(x,y,z)

a = x + y + z ;

a = a / 3.0 ;

end

function a = avg(x,y,z)

a = x + y + z ;

a = a / 3.0 ;

end



Which code sample is easier to read?

▪ Most languages use special characters ({ } 

pairs) or keywords (end, endif) to indicate 

sections of code that belong to:

▪ Functions

▪ Control statements like if

▪ Loops like for or while

▪ Python instead uses the indentation that 

programmers use anyway for readability.

C

Matlab

float avg(int a, int b, int c)

{

float sum = a + b + c ;

return sum / 3.0 ;

}

function a = avg(x,y,z)

a = x + y + z ;

a = a / 3.0 ;

end



The Use of Indentation

▪ Python uses whitespace (spaces or tabs) to define code blocks.

▪ Code blocks are logical groupings of commands. They are always

preceded by a colon :

▪ This pattern is consistently repeated throughout Python syntax.

▪ Spaces or tabs can be mixed in a file but not within a code block.

A code block

Another code block

def avg(x,y,z):

all_sum = x + y + z

return all_sum / 3.0

def mean(x,y,z):

return (x + y + z) / 3.0



Function Return Values

▪ A function can return any Python value.

▪ Function call syntax:

▪ Open function_calls.py for some examples

A = some_func() # some_func returns a value

Another_func() # ignore return value or nothing returned

b,c = multiple_vals(x,y,z) # return multiple values



Function arguments

▪ Function arguments can be required or optional.

▪ Optional arguments are given a default value

▪ To call a function with optional arguments:

▪ Optional arguments can be used in the order they’re declared or out of 

order if their name is used.

def my_func(a,b,c=10,d=-1):

…some code…

my_func(x,y) # a=x, b=y, c=10, d=-1

my_func(x,y,z) # a=x, b=y, c=z, d=-1

my_func(x,y,d=w,c=z) # a=x, b=y, c=z, d=w



For Loops

▪ For loops are used to repeat commands a specified number of times.

▪ Python has a built-in function to produce a sequence of numbers, range()
▪ range(N)  → numbers 0 to (N-1)

▪ range(M, N) → numbers M to (N-1)

▪ range(M, N, P)  → numbers M to (N-1) in steps of P

▪ Put that together with a for loop and run commands a specified number of 

times:

Indented code block, can be

multiple lines long.

range(10) → 0…9

i is first 0, then 1, then 2…



Project Euler Problem 6
▪ Write a function that solves this problem for an arbitrary amount N of natural numbers (1,2,3,…,N)

▪ In Spyder’s editor write a function “euler6” that takes an argument N and returns this calculation: 

https://projecteuler.net/problem=6


Lists

▪ A Python list is a general purpose 1-dimensional container for variables.

▪ i.e. it is a row, column, or vector of things

▪ Lots of things in Python act like lists or use list-style notation.

▪ Variables in a list can be of any type at any location, including other lists.

▪ Lists can change in size: elements can be added or removed



Making a list and checking it twice…

▪ Make a list with [ ] brackets.

▪ Append with the append() function

▪ Create a list with some initial elements

▪ Create a list with N repeated elements

Try these out yourself!

Add some print() calls to see the lists.



List functions

▪ Try dir(list_1)

▪ List have a number of built-in functions

▪ Let’s try out a few…

▪ Also try the len() function to see how 

many things are in the list: len(list_1)



List Indexing

▪ Elements in a list are accessed by an index number.

▪ Index #’s start at 0. 

▪ List:     

▪ First element:     x[0] → 'a'   

▪ Nth element:      x[2] → 'c'

▪ Last element:     x[-1]→ 'e'

▪ Next-to-last:       x[-2]→ 'd'

x=['a', 'b', 'c', 'd' ,'e']



List Slicing

▪ Slice syntax:       x[start:end:step]

▪ The start value is inclusive, the end value is exclusive.

▪ Start is optional and defaults to 0. 

▪ Step is optional and defaults to 1.

▪ Leaving out the end value means “go to the end”

▪ Slicing always returns a new list copied from the existing list

x=['a', 'b', 'c', 'd' ,'e']

x[0:1] → ['a']

x[0:2] → ['a','b']

x[-3:] → ['c', 'd', 'e']

# Third from the end to the end

x[2:5:2] → ['c', 'e']



List assignments and deletions

▪ Lists can have their elements overwritten or deleted (with the del) command.
▪ Note the del command does not use parentheses – it’s sort of like a function call.

x=['a', 'b', 'c', 'd' ,'e']

x[0] = -3.14 → x is now [-3.14, 'b', 'c', 'd', 'e']

del x[-1] → x is now [-3.14, 'b', 'c', 'd']



DIY Lists

▪ In the Spyder editor try the following things:

▪ Assign some lists to some variables.      a = [1,2,3]     b = 3*[‘xyz’]
▪ Try an empty list, repeated elements, initial set of elements

▪ Add two lists:   a + b   What happens?

▪ Try list indexing, deletion, functions from dir(my_list)

▪ Try assigning the result of a list slice to a new variable



More on Lists and Variables

▪ What happens when we pass a list to a 

function?

▪ Or we do an assignment with it?

Let’s visualize it!

https://pythontutor.com/visualize.html#code=def%20change_list%28my_list,%20val%29%3A%0A%20%20%20%20if%20len%28my_list%29%20%3E%200%3A%0A%20%20%20%20%20%20%20%20first_val%20%3D%20my_list.pop%280%29%0A%20%20%20%20my_list.extend%28%5Bval,%20first_val%5D%29%0A%20%20%20%20return%20my_list%20%20%20%0A%0Ax%3D%5B1,2%5D%0A%0A%23%20call%20change_list,%20overwrite%20x%0Ax%20%3D%20change_list%28x,10%29%0A%0A%23%20Do%20we%20need%20the%20return%20value%3F%0Achange_list%28x,%2020%29%0A%0A%23%20What%20about%20an%20assignment...%0Ay%20%3D%20x%0Achange_list%28y,-1.5%29%0Aprint%28x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


Copying Lists

▪ How to copy (2 ways…there are more!):     

▪ y = x[:] or  y=list(x)

▪ Many data types in Python have this same behavior


	Slide 1: Introduction to Python Part 1  v0.9
	Slide 2: About You
	Slide 3: RCS Team and Expertise 
	Slide 4: Python on the SCC
	Slide 5: Python on the SCC
	Slide 6: Getting Python for Yourself:  Anaconda
	Slide 7: Spyder – a Python development environment
	Slide 8: The Spyder IDE
	Slide 9: Tutorial Outline – Part 1
	Slide 10: Some History
	Slide 11: Compiled Languages   (ex. C++ or Fortran)
	Slide 12: Interpreted Languages   (ex. Python or R)
	Slide 13: The Python Prompt
	Slide 14: Operators
	Slide 15: Try Python as a calculator
	Slide 16: Operators
	Slide 17: More Operators
	Slide 18: Comments
	Slide 19: Spyder Cells
	Slide 20: Variables
	Slide 21: Variables cont’d
	Slide 22: Variable Data Types
	Slide 23: Variable Data Types
	Slide 24: Variable modifying operators
	Slide 25: Strings
	Slide 26: Functions
	Slide 27: Python functions
	Slide 28: Sample Built-In Functions
	Slide 29: Visualize a Function Call
	Slide 30: Write a Function
	Slide 31: Which code sample is easier to read?
	Slide 32: Which code sample is easier to read?
	Slide 33: The Use of Indentation
	Slide 34: Function Return Values
	Slide 35: Function arguments
	Slide 36: For Loops
	Slide 37: Project Euler Problem 6
	Slide 38: Lists
	Slide 39: Making a list and checking it twice…
	Slide 40: List functions
	Slide 41: List Indexing
	Slide 42: List Slicing
	Slide 43: List assignments and deletions
	Slide 44: DIY Lists
	Slide 45: More on Lists and Variables
	Slide 46: Copying Lists

