
Introduction to Python

Part 2

v0.9

Research Computing Services

Information Services & Technology



Tutorial Outline – Part 2

▪ If / else 

▪ Classes

▪ Loops

▪ Tuples and dictionaries 

▪ Modules

▪ Some useful modules

▪ Script setup  

▪ Development notes



If / Else

▪ If, elif, and else statements are used to implement conditional program 

behavior

▪ Syntax:

▪ elif and else are not required – use them to chain together multiple 

conditional statements or provide a default case.

if Boolean_value:

…some code

elif Boolean_value:

…some other code

else:

…more code



▪ Try out something like this in the Spyder

editor.

▪ Do you get any error messages in the 

console?

▪ Try using an elif or else statement by 

itself without a preceding if.  What error 

message comes up?



If / Else code blocks

▪ Python knows a code block has 

ended when the indentation is 

removed.

▪ Code blocks can be nested 

inside others therefore if-elif-else

statements can be freely nested 

within others.

▪ Or used in functions…



Project Euler Problem 1 
▪ Let’s code this!

https://projecteuler.net/problem=1


Python Classes  

▪ OOP:  Object Oriented Programming

▪ In OOP a class is a data structure that combines data with functions that 

operate on that data.

▪ An object is a variable whose type is a class
▪ Also called an instance of a class

▪ Classes provide a lot of power to help organize a program and can 

improve your ability to re-use your own code.



Object-oriented programming

▪ Classes can contain data and methods 

(internal functions). 

▪ Methods can call other code inside the 

class to implement complex behavior.

▪ This is a highly effective way of modeling 

real world problems inside of a computer 

program.

public interface

internal data and methods

“Class Car”



Object-oriented programming

▪ Python is a fully object oriented

programming (OOP) language.

▪ Some familiarity with OOP is needed to 

understand Python data structures and 

libraries.

▪ You can write your own Python classes 

to define custom data types.

boston_pop = 685094

boston_sq_km = 232.1

boston_num_colleges = 35

Boston

Population 685094

Area (km2) 232.1

# of colleges 35

Track via separate variables

A class lets you bundle 

these into one variable



Writing Your Own 

Classes

▪ Define your own Python 

classes to:
▪ Bundle together logically related 

pieces of data

▪ Write functions that work on specific 

types of data

▪ Improve code re-use

▪ Organize your code to more closely 

resemble the problem it is solving.

class City:

''' A class to hold info about a city '''

def __init__(self, name, area, pop, num_colleges):

self.name = name

self.area = area

self.pop = pop

self.num_colleges = num_colleges

def is_best_city(self):

return self.name == 'Boston'

boston = City('Boston', 685094, 232.1, 35)

new_york = City('New York City', 8804190, 1223.59, 120)

print(new_york.is_best_city()) # prints False



Syntax for using Python classes

Create an object, which is a 

variable whose type is a 

Python class.

Created by a call to the class 

or returned from a function. 

Call a method for this object:   

object_name.method_name(args…)

# Open a file. This returns a file object.

file = open('some_file.txt')

# Read all the lines from the text file.

# Return them as a list.

lines = file.readlines()

# Get the filename

file.name # --> some_file.txt

Access internal data for this object:   

object_name.data_name



Classes bundle data and functions

▪ In Python, calculate the area of some shapes after defining some functions.

▪ If we defined Circle and Rectangle classes with their own area() methods…it is not 

possible to miscalculate.

radius = 14.0

width_square = 14.0

a1 = area_circle(radius) # ok

a2 = area_square(width_square) # ok

a3 = area_circle(width_square) # !! OOPS



▪ Group data with matching 

functions into classes.

class Circle

def __init__(self, radius):

self.radius = radius

def area(self):

return 3.14.159 * self.radius**2

class Square:

def __init__(self, width):

self.width = width

def area(self):

return self.width**2

c1 = Circle(radius)

r1 = Square(width_square)

a1 = c1.area()

a2 = r1.area()



When to use your own class

▪ A class works best when you’ve done some planning and design work 

before starting your program.

▪ This is a topic that is best tackled after you’re comfortable with solving 

programming problems with Python.

▪ Some tutorials on using Python classes:

W3Schools:   https://www.w3schools.com/python/python_classes.asp

Python tutorial: https://docs.python.org/3.6/tutorial/classes.html

https://www.w3schools.com/python/python_classes.asp
https://docs.python.org/3.6/tutorial/classes.html


Strings Are a Class In Python

▪ Python defines a string class – all strings in Python are objects.

▪ This means strings have:

▪ Their own internal (hidden) memory management to handle storage of the characters.

▪ A variety of methods (functions) that operate on the stored string once you have a 

string object.

▪ You can’t access string functions without a string – in Python the string 

provides its own functions.

▪ C:  strcat, strcmp, strlen functions 

▪ Matlab:  strlength, isletter, etc

▪ R: nchar, toupper, etc



String functions

▪ In the Python console, create a string variable 

called mystr

▪ type:  dir(mystr)

▪ Try out some functions:

▪ Need help? Try:

help(mystr.title)

mystr = 'Hello!'

mystr.upper()

mystr.title()

mystr.isdecimal()

help(mystr.isdecimal)



The len() function

▪ The len() function is not a string specific function.

▪ It’ll return the length of any Python object that contains any

countable thing.

▪ In the case of strings it is the number of characters in the 

string.

len(mystr)→ 6



String operators

▪ Try using the + and += operators with strings in the 

Python console.

▪ + concatenates strings.

▪ += appends strings.

▪ These are defined in the string class as functions that 

operate on strings.

▪ Index strings using square brackets, starting at 0.



String operators

▪ Changing elements of a string by an index is not allowed:

▪ Python strings are immutable, i.e. they can’t  be changed.



Old School String Substitutions

▪ Python provides an easy way 

to stick variable values into 

strings called substitutions

▪ Syntax for one variable:

▪ For more than one:

▪ Printing:     

%s means sub in 

value

variable name 

comes after a % 

Variables are listed in the 

substitution order inside ()

print('x: %s, y: %s, z:%s' % (xval,yval,2.0))



Recommended: f-string Substitutions 

▪ f-strings are a more 

contemporary way to format 

strings.

▪ Use a lowercase f before the first 

quote.

▪ Put the names of variables, or 

function calls, in {} pairs inside the 

strings.

name = 'Boston'

school = f'{name} University'

result = f'{mathcalc(1,2,3)}'

https://www.python.org/dev/peps/pep-0498/


While Loops

▪ While loops have a condition and a 

code block.
▪ the indentation indicates what’s in the while loop.

▪ The loop runs until the condition is false.

▪ The break keyword will stop a while 

loop running.

▪ In the Spyder edit enter in some 

loops like these.  Save and run them 

one at a time.  What happens with 

the 1st loop?



For loops (again)

▪ for loops in general loop through a 

collection of things.

▪ The for loop syntax has a collection 

and a code block.
▪ Each element in the collection is accessed in 

order by a reference variable

▪ Each element can be used in the code block.

▪ The break keyword can be used in for 

loops too.

collection

In-loop reference 

variable for each 

collection element

The code block



Processing lists element-by-element

▪ A for loop is a convenient way to process every element in a list.

▪ There are several ways:
▪ Loop over the list elements

▪ Loop over a list of index values and access the list by index

▪ Do both at the same time

▪ Use a shorthand syntax called a list comprehension

▪ Open the file looping_lists.py



Lists With Loops

▪ Open the file read_a_file.py

▪ This is an example of reading a file 

into a list.  The file is shown to the 

right, numbers.txt

▪ We want to read the lines in the file 

into a list of strings (1 string for each 

line), then extract separate lists of 

the odd and even numbers.

• read_a_file_low_mem.py is a 

modification that uses less memory 

by processing the file line-by-line.

38,83,37,21,98

50,53,55,37,97

39,7,81,87,82

18,83,66,82,47

56,64,9,39,83

…etc…

numbers.txt



Tuples

▪ Tuples are lists whose elements can’t 

be changed.
▪ Like strings they are immutable

▪ Indexing (including slice notation) is 

the same as with lists.



Return multiple values from a function

▪ Tuples are used to return multiple 

values from a function.

▪ Python syntax can automatically 

unpack a tuple return value.



Dictionaries

▪ Dictionaries are another basic Python data type that are tremendously 

useful.

▪ Create a dictionary with a pair of curly braces:

x = {}

▪ Dictionaries store values and are indexed with keys

▪ Create a dictionary with some initial values:

x = {'a_key':55, 100:'a_value', 4.1:[5,6,7]}



Dictionaries

▪ Values can be any Python thing 

▪ Keys can be primitive types (numbers), strings, tuples, and some custom 

data types
▪ Basically, any data type that is immutable

▪ Lists and dictionaries cannot be keys but they can stored as values.

▪ Index dictionaries via keys:
x['a_key'] → 55

x[100] → 'a_value'



Try Out Dictionaries

▪ Create a dictionary in the Python console or 

Spyder editor.

▪ Add some values to it just by using a new key as 

an index.  Can you overwrite a value?

▪ Try x.keys() and x.values()

▪ Try:  del x[valid_key] → deletes a key/value 

pair from the dictionary.



Modules

▪ Python modules, aka libraries or packages, add functionality to the core 

Python language.

▪ The Python Standard Library provides a very wide assortment of functions 

and data structures.
▪ Check out their Brief Tour for a quick intro.

▪ Distributions like Anaconda provides dozens or hundreds more

▪ You can write your own libraries or install your own.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/stdlib.html


PyPI

▪ The Python Package Index is a central repository for Python software.
▪ Mostly but not always written in Python.

▪ A tool, pip, can be used to install packages from it into your Python setup.
▪ Anaconda provides a similar tool called conda

▪ Number of projects (as of January 2023): 430,524

▪ You should always do your due diligence when using software from a 

place like PyPI.  Make sure it does what you think it’s doing!

https://pypi.org/
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/


Python Modules on the SCC

▪ Python modules should not be confused with the SCC module command.

▪ For the SCC there are instructions on how to install Python software for 

your account or project.

▪ Many SCC modules provide Python packages as well.
▪ Example:  tensorflow, pycuda, others.

▪ Need help on the SCC?   Send us an email: help@scc.bu.edu

http://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/install-packages/
mailto:help@scc.bu.edu


Importing Libraries

▪ The import command is used to load a 

library.

▪ The name of the library is prepended to 

function names and data structures in the 

module.
▪ The preserves the library namespace

▪ This allows different libraries to have the 

same function names – when loaded the 

library name keeps them separate. 

Try these out!



Fun with import

▪ The import command can strip away the module name:

▪ Or it can import select functions:

▪ Or rename on the import:

from math import *

from math import cos

from math import cos,sqrt

from math import sin as pySin



Easter Eggs

# Try to load curly braces for Python

from __future__ import braces

# Proof that Python programmers have more fun

import antigravity



Fun with import

▪ The import command can also load 

your own Python files.

▪ The Python file to the right can be 

used in another Python script:

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

# Odd if there's a remainder when

# dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

myfuncs.py

# Don't use the .py ending

import myfuncs

x = [1,2,3,4]

y = myfuncs.get_odds(x)

▪ Splitting your code into multiple files 

helps with development and 

organization.



Import details

▪ Python reads and executes a file 

when the file is:
▪ opened directly:   python somefile.py

▪ imported:   import somefile

▪ Lines that create variables, call 

functions, etc. are all executed.

▪ Here these lines will run when it’s 

imported into another script!

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

# Odd if there's a remainder when

# dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

x = [1,2,3,4]

y = get_odds(x)

print(y)

myfuncs.py



The __name__ attribute

▪ Python stores object information in 

hidden fields called attributes

myfuncs.py

# in another Python

# script

import myfuncs

▪ Every file has one called __name__ 

whose value depends on how the 

file is used.

__name__ → myfuncs

(i.e. the file name)

# called directly

python myfuncs.py
__name__ → __main__



The __name__ attribute

▪ __name__ can be used to make a 

Python scripts usable as a 

standalone program and as 

imported code.

▪ Now: 
▪ python myfuncs.py → __name__ has the 

value of ‘__main__’ and the code in the if

statement is executed.

▪ import myfuncs → __name__ is ‘myfuncs’ 

and the if statement does not run.

def get_odds(lst):

''' Gets the odd numbers in a list.

lst: incoming list of integers

return: list of odd integers '''

odds = []

for elem in lst:

# Odd if there's a remainder when

# dividing by 2.

if elem % 2 != 0:

odds.append(elem)

return odds

if __name__=='__main__':

x = [1,2,3,4]

y = get_odds(x)

print(y)

myfuncs.py



Very Useful Modules

▪ numpy is a Python library that provides efficient multidimensional numeric 

data structures

▪ matplotlib is a popular plotting library
▪ Remarkably similar to Matlab plotting commands!

▪ scipy provides a wide variety of numerical algorithms:
▪ Integrations, curve fitting, machine learning, optimization, root finding, etc. 

▪ Built on top of numpy

▪ pandas is used for data analysis using DataFrame structures
▪ Very similar to what you find in R.

http://www.numpy.org/
https://matplotlib.org/
https://www.scipy.org/
https://pandas.pydata.org/docs/user_guide/scale.html


numpy

▪ numpy provides data structures written in compiled C code

▪ Many of its operations are executed in compiled C or Fortran code, not 

Python.

▪ Check out numpy_basics.py



numpy datatypes

▪ Unlike Python lists, which are generic 

containers, numpy arrays are typed and hold a 

single type of data.

▪ If you don’t specify a type, numpy will assign 

one automatically.

▪ A wide variety of numerical types are available.

▪ Proper assignment of data types can sometimes have a significant effect on 

memory usage and performance.

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html


Numpy operators

▪ Numpy arrays will do element-wise 

arithmetic:  +  / - * **

▪ Matrix (or vector/matrix, etc.) 

multiplication needs the .dot() function.

▪ Numpy has its own sin(), cos(), log(), 

etc. functions that will operate element-

by-element on its arrays. Try these out!



Plotting with matplotlib

▪ Matplotlib is the most popular 

Python plotting library
▪ Seaborn is another. 

▪ Based on Matlab plotting.

▪ Plots can be made from lists, 

tuples, numpy arrays, etc.

Try these out!

https://seaborn.pydata.org/


▪ Some sample images from matplotlib.org

▪ A vast array of plot types in 2D and 3D are available in 

this library.

https://matplotlib.org/tutorials/introductory/sample_plots.html


A numpy and matplotlib example

▪ numpy_matplotlib_fft.py is a short example on using numpy and matplotlib

together.

▪ Open numpy_matplotlib_fft.py

▪ This sample extracts signals from a noisy background.



Writing Quality Pythonic Code

▪ Cultivating good coding habits pays off in many ways:
▪ Easier and faster to write

▪ Easier and faster to edit, change, and update your code

▪ Other people can understand your work

▪ Python lends itself to readable code
▪ It’s quite hard to write completely obfuscated code in Python.

▪ Exploit language features where it makes sense

▪ Contrast that with this sample of obfuscated C code.

▪ Here we’ll go over some suggestions on how to setup a Python script, 

make it readable, reusable, and testable. 

https://www.ioccc.org/2018/algmyr/prog.c
https://www.ioccc.org/


Compare some Python scripts

▪ Open up three files and let’s look at them.

▪ A file that does…something…
▪ bad_code.py

▪ Same code, re-organized:
▪ good_code.py

▪ Same code, debugged, with testing code:
▪ good_code_testing.py



Command line arguments

▪ Try to avoid hard-coding file paths, 

problem size ranges, etc. into your 

program.

▪ They can be specified at the command 

line.

▪ Look at the argparse module, part of 

the Python Standard Library.

https://docs.python.org/3/library/argparse.html


Function, class, and variable naming

▪ There’s no word or character limit for names.

▪ It’s ok to use descriptive names for things.

▪ An IDE (like Spyder) will help you fill in longer names so there’s no extra 

typing anyway.

▪ Give your functions and variables names that reflect their meaning.
▪ Once a program is finished it’s easy to forget what does what where



An example development process
▪ Work to develop your program.  

▪ Do some flowcharts, work out algorithms, and so on.

▪ Write some Python to try out a few ideas.

▪ Get organized.

▪ Write a “1st draft” version that gets most of what’s needed done. 

▪ Move hard-coded values into the if __name__==‘__main__’ section of your code.

▪ Once the code is testing well add command line arguments and remove hard-

coded values

▪ Finally (e.g. to run as an SCC batch job) test run from the command line.



Spyder command line arguments

▪ Click on the Run menu and choose 

Configuration per file

▪ Enter command line arguments



Python from the command line on the SCC

▪ To run Python from the command line:

▪ After a Python module is loaded just type python followed by the script 

name followed by script arguments.



Where to get help…

▪ The official Python Tutorial

▪ Automate the Boring Stuff with Python
▪ Focuses more on doing useful things with Python, not focused on scientific computing

▪ Full Speed Python tutorial

▪ Contact Research Computing:  help@scc.bu.edu

https://docs.python.org/3/tutorial/index.html
http://automatetheboringstuff.com/
https://github.com/joaoventura/full-speed-python/releases/
mailto:help@scc.bu.edu


End-of-course Evaluation Form

▪ Please visit this page and fill in the evaluation form for this course.

▪ Your feedback is highly valuable to the RCS team for the improvement 
and development of tutorials.

http://scv.bu.edu/survey/tutorial_evaluation.html

http://scv.bu.edu/survey/tutorial_evaluation.html

	Slide 1: Introduction to Python Part 2   v0.9
	Slide 2: Tutorial Outline – Part 2
	Slide 3: If / Else
	Slide 4
	Slide 5: If / Else code blocks
	Slide 6: Project Euler Problem 1 
	Slide 7: Python Classes  
	Slide 8: Object-oriented programming
	Slide 9: Object-oriented programming
	Slide 10: Writing Your Own  Classes
	Slide 11: Syntax for using Python classes
	Slide 12: Classes bundle data and functions
	Slide 13
	Slide 14: When to use your own class 
	Slide 15: Strings Are a Class In Python
	Slide 16: String functions
	Slide 17: The len() function
	Slide 18: String operators
	Slide 19: String operators
	Slide 20: Old School String Substitutions
	Slide 21: Recommended: f-string Substitutions 
	Slide 22: While Loops
	Slide 23: For loops (again)
	Slide 24: Processing lists element-by-element
	Slide 25: Lists With Loops
	Slide 26: Tuples
	Slide 27: Return multiple values from a function
	Slide 28: Dictionaries
	Slide 29: Dictionaries
	Slide 30: Try Out Dictionaries
	Slide 31: Modules
	Slide 32: PyPI
	Slide 33: Python Modules on the SCC
	Slide 34: Importing Libraries
	Slide 35: Fun with import
	Slide 36: Easter Eggs
	Slide 37: Fun with import
	Slide 38: Import details
	Slide 39: The __name__ attribute
	Slide 40: The __name__ attribute
	Slide 41: Very Useful Modules
	Slide 42: numpy
	Slide 43: numpy datatypes
	Slide 44: Numpy operators
	Slide 45: Plotting with matplotlib
	Slide 46
	Slide 47: A numpy and matplotlib example
	Slide 48: Writing Quality Pythonic Code
	Slide 49: Compare some Python scripts
	Slide 50: Command line arguments
	Slide 51: Function, class, and variable naming
	Slide 52: An example development process
	Slide 53: Spyder command line arguments
	Slide 54: Python from the command line on the SCC
	Slide 55: Where to get help…
	Slide 56: End-of-course Evaluation Form

