Introduction to Python
Part 1

v0.9

Research Computing Services
Information Services & Technology

BOSTON
UNIVERSITY

About You

= Working with Python already?

= Have you used any other programming languages?

= Why do you want to learn Python?

BOSTON
UNIVERSITY

RCS Team and Expertise

= Our Team = Consulting Focus:
= Scientific Programmers = Bioinformatics
= Systems Administrators = Data Analysis / Statistics
= Graphics/Visualization Specialists = Molecular modeling
= Account/Project Managers = Geographic Information Systems
= Special Initiatives (Grants) = Scientific / Engineering Simulation
= Maintains and administers the Shared = Visualization

Computing Cluster
= Located in Holyoke, MA
= ~23,000 CPUs running Linux
= CONTACT US: help@scc.bu.edu

BOSTON
UNIVERSITY

http://rcs.bu.edu/
mailto:help@scc.bu.edu

Python on the SCC

= There is documentation for using Python on the SCC on the RCS website.
= Use the module system to find Python:

]1$ module avail python3

/share/module.7/programming
python3-intel/2021.1.1 python3/3.7.. python3/3.
python3/3.6.5 python3/3.7.5 python3/3.
python3/3.6.9 python3/3.7. python3/3.
python3/3.6.1¢ python3/3.7.! python3/3.
python3/3.6.12 python3/3.7.1¢ python3/3.

|:tl

0o o oo

o

Where:
D: Default Module

Use "module spider" to find all possible modules.
Use "module keyword keyl key2 ..." to search for all possible modules matching

BOSTON mmany of the "keys".
UNIVERSITY

https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/anaconda/

.
Python on the SCC

= Python can be used in gsub jobs by loading a Python module:

#!/bin/bash -1
#S -P myproj

#S -m ea

#5 -N PythonJob

module load python3/3.10.5

python myscript.py argl arg?

BOSTON
UNIVERSITY

Getting Python for Yourself: Anaconda

= The most popular setup for personal computers
= https://www.anaconda.com/download/

= Anaconda is a packaged set of programs including the Python language,
a huge number of libraries, and several tools.
= These include the Spyder development environment and Jupyter notebooks.

= Anaconda can be used on the SCC, with some setup required.

BOSTON
UNIVERSITY

https://www.anaconda.com/download/
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/anaconda/

Spyder — a Python development environment

" Pros:
= Faster development
= Easier debugging!
= Helps organize code

= Cons

= Learning curve

= Can add complexity to smaller
problems

BOSTON
UNIVERSITY

BOSTON

UNIVERSITY

nsoles Projects View Help

(N

file editor

0]

4

Nam< Type S Value

Variable Explorer Plots Files

Console 1/A
15 | packaged by conda-forge | (main, No
4 bit 1
opyright™, "credi or "license” for more information.

IPython 8.8.@ -- An enhanced Interactive Python.

In [1]:

IPython Console Hi

Mem 77%

Tutorial Outline — Part 1

[- What is Python?]
= QOperators

= Variables

= Functions

= Lists

BOSTON
UNIVERSITY

.
Some History

= “Over six years ago, in December 1989, | was looking for a "hobby"
programming project that would keep me occupied during the week
around Christmas...l chose Python as a working title for the project, being
In a slightly irreverent mood (and a big fan of Monty Python's Flying
Circus).”
—Python creator Guido Van Rossum, from the foreward to Programming Python (15t ed.)

= Goals:

= An easy and intuitive language just as powerful as major competitors
= QOpen source, so anyone can contribute to its development

= Code that is as understandable as plain English

= Suitability for everyday tasks, allowing for short development times

BOSTON
UNIVERSITY

COmp|IEd Languages (ex. C++ or Fortran)

L

il

header files
iastream.h
my_header.h

* BExpanded source code file

C++ preprocessor —— * not normally visible L C++ compiler
* g++-E to see output

—

main.cpp — l

* Assembler code file

assembler W B * not narmally visible
* g++-5to see output

- e

C++ library files
system library files

‘ Ohject code file
main.o

Executable

linker _ g++ -0 main main.cpp
main

BOSTON
UNIVERSITY

Interpreted LanguageS (ex. Python or R)

Python interpreter:
Source code files Python interpreter SRS zollows b t:code
prog.py y P conversion . y.
math.py ol Instructions

_/

[python prog.py]

A lot less work is done to get a program to start running compared with compiled
languages!

Python programs start running immediately — no waiting for the compiler to finish.

Bytecodes are an internal representation of the text program that can be efficiently run by
the Python interpreter.

The interpreter itself is written in C and is a compiled program.

BOSTON
UNIVERSITY

The Python Prompt

= The standard Python prompt looks like this:

[bgregor@scc2 bgl$ python
Python 3.6.2 (default, Aug 30 2017, 15:46:55)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux

Type "help"”, "copyright", "credits" or "license" for more information.

oS

= The IPython prompt in Spyder looks like this:

Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2817, ©83:27:45) [MSC v.1980 64 bit (AMDE4)]
Type "copyright", "credits" or "license" for more information.

IPython 6.1.8 -- An enhanced Interactive Python.

In [1]:

UNIVERSITY .
IPython adds some handy behavior around the standard Python prompt.

Operators

= Python supports a wide variety of operators which act like functions, I.e.
they do something and return a value:

= Arithmetic: + —~ * / // 5 * *

= Logical: and or not

= Comparison: > < >= <= = ——
= Assignment: =

= Bitwise: & | ~ A >> <<

= |dentity: is is not

= Membership: in not in

BOSTON
UNIVERSITY

Try Python as a calculator

= (o to the Python prompt.
= Try out some arithmetic operators:

+ - * /]

= Can you identify what they all do?

BOSTON
UNIVERSITY

Python 3.9.15 | packaged by conda-forge | (main, Mow 22 2822,
v.1929 64 bit (AMDE4)]

Type “copyright™,
IPython 8.8.8 --

In [1]: 1 + 3

In [2]:

In [3]:

5

* K

"credits" or "license" for more information.

An enhanced Interactive Python.

== () and

@8:41:22) [MsC

Operators
+ Addition
- Subtraction
* Multiplication
/ Division (25/4 =6.25)
I/ Integer Division (25//4=6)
% Remainder (aka modulus)
o Exponentiation
== Equals
and or not Boolean operations
> < <= >= Comparison

BOSTON
UNIVERSITY

More Operators

= Try some comparisons and Boolean operators. True and False are the
keywords indicating those values:

BOSTON
UNIVERSITY

Comments

T
N

= #is the Python comment character. On
any line everything after the # character
IS ignored by Python.

Edit Search Source Run Debug Consoles

= There 1s no multi-line comment D undo ez
character as in C or C++. C Redo Ctri+shift+2
Cut Ctri+X
j Copy Ctrl+C
. . . -y Paste Ctrl+Vv
= An editor like Spyder makes it very easy 2 eranl e
to comment blocks of code or vice- '® Comment/Uncomment ctri+1
versa. Check the Edit menu RO
= |ndent Tab
= Unindent Shift+Tab

BOSTON Toggle Uppercase Ctrl+Shift+U
UNIVERSITY]
Toggle Lowercase Ctrl+U

One cell

Spyder Cells

C? Run cell Ctrl+Return
C} Run cell and advance Shift+Return
8 ThIS IS a Spyder_speCIfIC L. :jnn:;::ri:th;:lnl:ur current line }::JFHEtum
tOOI for helplng yOU tO run a4 Run to current line Shift+F9
Snlppets Of Code In the flle A Run from current line Ctrl+F9
. D Go to definition Ctrl+G
vith open('data.txt') as f:
edltor' ali_data = f_readlines() Inspect current chject Ctrl+I
Undo Ctrl+Z
s Redo Ctrl+Shift+Z
: Every time the CharaCterS .:-.I::—"i_:.'_i_.: all the text that was rea Cut Ctrl+X
#9069 are seen Spyder caps = [tmp.upper() for tmp in all_data Copy Ctrl+C
treats that section as a o)
“Ce””. @ foom in Ctrl++
= Right-click to run a single
cell.

= Or use the keyboard shortcuts

Note: A “right-click” on a Mac is

“click while holding down the
UNIVERSITY Contr0| key”

Variables
In [1]: a=1
= Variables are assigned values using the = operator In [2]: b=2
= |n the Python console, typing the name of a variable " [3]: a
prints its value Out[3]: 1
= Not true in a script!
= Visualize Assignment In [4]: b
Out[4]: 2
In [5]: a=b

= Variables can be reassigned at any time
= Variable type is not specified In [6]: a
= Types can be changed with a reassignment |

BOSTON
UNIVERSITY

https://pythontutor.com/visualize.html#code=y%20%3D%20%5B2,3,4%5D%0Ax%20%3D%203%0Ay%20%3D%20'abc'&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Variables cont'd

= Variables refer to a value stored in memory and are created when first

assigned

= Variable names:
= Must begin with a letter (a - z, A - Z) or underscore _
= QOther characters can be letters, numbers or _
= Are case sensitive: capitalization counts!
= Can be any reasonable length

= Assignment can be done en masse:

_ _ _ Try these out!
= Multiple assignments can be done on one line: /

X, vy, z =1, 2.39, 'cat'
BOSTON
UNIVERSITY

Variable Data Types

= Python determines data types for variables based on the context

= The type is identified when the program runs, using dynamic typing

= Compare with compiled languages like C++ or Fortran, where types are identified by
the programmer and by the compiler before the program is run.

= Run-time typing is very convenient and helps with rapid code development

BOSTON
UNIVERSITY

Variable Data Types

Numbers

Complex numbers

Strings

Boolean

Lists, dictionaries, sets, and tuples
Specialty types

Custom types

BOSTON
UNIVERSITY

Integers and floating point (64-bit)
x = complex(3,1) O x = 3+17
"cat" Of 'dog'
True O False

These hold collections of values
Files, network connections, etc.

User- or library-defined types using
Python classes

Variable modifying operators

= Some additional arithmetic operators that modify variable values:

Operator Effect Equivalent to...
X+=y Add the value of y to x X=Xty
X-=Y Subtract the value of y from x X =X-VY
X *=y Multiply the value of x by y X =X*y
X/=y Divide the value of x by y X =x/y

= The += operator is by far the most used of these.

BOSTON
UNIVERSITY

Strings
= Strings are a basic data type in Python. ‘cat”
“dog"

= Indicated using pairs of single " or bt e
double " quotes.

= Multiline strings use a triple set of They sald “hello™
guotes (single or double) to start and ' This is
end them. a multiline

string "'°

BOSTON
UNIVERSITY

Functions

= Functions are used to create pieces of code that can be used in a
program or in many programs.

= The use of functions is to logically separate a program into discrete
computational steps.

= Programs that make heavy use of function definitions tend to be easier to:
= develop
= debug
= maintain
= understand

BOSTON
UNIVERSITY

Python functions e name

Optional comma-separated

list of arguments (incoming
/ variables)
Keyword def =~~~ def func_name(argl,arg?):

.. .50me code... — — A code block

.. .50me more code. ..
return some wvalue

Optional return statement /

= The return value can be any Python type

= |f the return statement is omitted a special None value is still returned.
= The arguments are optional but the parentheses are required!
= Functions must be defined before they can be called.

BOSTON
UNIVERSITY

Sample Built-In Functions

Let’s try a few useful built-in functions...

= print()
= dir()

" type()
help()

BOSTON
UNIVERSITY

Visualize a Function Call

= Here’s a simple function call to calculate the equation of a line.

BOSTON
UNIVERSITY

https://pythontutor.com/visualize.html#code=def%20line%28x,%20A,%20B%29%3A%0A%20%20%20%20'''%20Compute%20the%20equation%20of%20a%20line%20'''%0A%20%20%20%20y%20%3D%20A%20*%20x%20%2B%20B%0A%20%20%20%20return%20y%0A%20%20%20%20%0A%23%20Call%20our%20function%20with%20a%20few%20values.%0Aslope%20%3D%200.5%0Aintercept%20%3D%20-1.0%0A%0Ay1%20%3D%20line%282.6667,%20slope,%20intercept%29%0A%0Ax2%20%3D%20-0.5%0Ay2%20%3D%20line%28x2,%20slope,%20intercept%29%0A%0Aprint%282.6667,%20y1%29%0Aprint%28x2,%20y2%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

ief mathcalc(...your args here...):

I._I .

Write a Function e

...your calculated value...

MresultT

ans = mathcalc(...

= |n Spyder’s editor: print(ans)

= Define a function called mathcalc that takes 3 numbers as arguments and returns
their sum divided by their product.

= Save the file and run it. Here’s some sample output to check your result.

mathcalc(1l,2,3) =2 returns 1.0

mathcalc (4, -2.5, 3.0) =2 returns -0.15

N
Which code sample is easier to read?

float avg(int a, int b, int c)

float avg(int a, int b, int c){ {
= C: float sum = a + b + ¢ ; or float sum = a + b + ¢ ;
return sum / 7} return sum / ;
}
= Matlab: function a = avg(x,vy,z) function a = avg(x,vy,z)
a=x+vy + z; or a=x+vy + z ;
a=a/ ; a=a/ ;
end end

BOSTON
UNIVERSITY

N
Which code sample is easier to read?

C
float avg(int a, int b, int c)
= Most languages use special characters ({ } {

pairs) or keywords (end, endif) to indicate float sum = a + b + ¢ ;

return sum /

sections of code that belong to: }
= Functions
= Control statements like if
= Loops like for or while Matlab
function a = avg(x,vy,z)
]]] a=x+vy + z ;
= Python instead uses the indentation that a=a/
programmers use anyway for readability. end

BOSTON
UNIVERSITY

The Use of Indentation

= Python uses whitespace (spaces or tabs) to define code blocks.

= Code blocks are logical groupings of commands. They are always
preceded by a colon :

def avg(x,y,z): A code block
all sum = x + y + z /

return all sum / 3.0

def mean(x,vy,z):
Another code block —> return (x + vy + z) / 3.0

= This pattern is consistently repeated throughout Python syntax.
= Spaces or tabs can be mixed in a file but not within a code block.

BOSTON
UNIVERSITY

N
Function Return Values

= A function can return any Python value.

= Function call syntax:

A = some func() # some func returns a value
Another func() # ignore return value or nothing returned
b,c = multiple vals(x,y,z) # return multiple values

= Open function_calls.py for some examples

BOSTON
UNIVERSITY

Function arguments

= Function arguments can be required or optional.
= Optional arguments are given a default value

def my func(a,b,c=10,d=-1):
..some code..

= To call a function with optional arguments:

= Optional arguments can be used in the order they’re declared or out of
order if their name is used.

my func(x,y) # a=x, b=y, c=10, d=-1
my_funC(XIYIZ) # a=x, b=y, c¢c=z, d=-

BOSTON my func(x,y,d=w,c=z) # a=x, b=y, c=z, d=w
UNIVERSITY —

For Loops

= For loops are used to repeat commands a specified number of times.

= Python has a built-in function to produce a sequence of numbers, range()
= range(N) - numbers O to (N-1)
= range(M, N) = numbers M to (N-1)
= range(M, N, P) - numbers M to (N-1) in steps of P

= Put that together with a for loop and run commands a specified number of

times:
range(10) - 0...9

for i in range(10):

print(i)

Indented code block, can be
multiple lines long.

BOSTON
UNIVERSITY

Iis first O, then 1, then 2...

Project Euler Problem 6

= Write a function that solves this problem for an arbitrary amount N of natural numbers (1,2,3,...,N)
= |n Spyder’s editor write a function “euler6” that takes an argument N and returns this calculation:

Sum square difference
Problem 6

Anl._IB

The sum of the squares of the first ten natural numbers is,

\ calculations here.
12+ 2%4...+10% =385 # hint: a "for" loop.
: to return the
The square of the sum of the first ten natural numbers is, return ...your answer...

(1+2+...+10)* = 55 = 3025

Hence the difference between the sum of the squares of the first ten natural numbers # j" 1s should print
and the square of the sum is 3025 — 385 = 2640. print(euler6(10))

Find the difference between the sum of the squares of the first one hundred natural # This should print

numbers and the square of the sum. print(euler6(100))

BOSTON
UNIVERSITY

https://projecteuler.net/problem=6

Lists

= A Python list is a general purpose 1-dimensional container for variables.
= j.e.itis arow, column, or vector of things

= Lots of things in Python act like lists or use list-style notation.
= Variables in a list can be of any type at any location, including other lists.

= Lists can change in size: elements can be added or removed

BOSTON
UNIVERSITY

Making a list and checking it twice...

L list 1 =
= Make a list with [] brackets. ist 1=1]
list_1.append(1)
list 1.append('A string!”)

= Append with the append() function list 1.append([])

Create a list with some Initial elements

list 2 = [4, 5, -23.8+4.15, 'cat']

Create a list with N repeated elements .
list 3

10 * [42]

Try these out yourself!
Add some print() calls to see the lists.

BOSTON
UNIVERSITY

List functions

"append”,
‘clear’,
‘copy’,
‘count’,
"extend’,
"index”,
“insert’,
= Let's try out a few... :r:'ﬂr:", .
remove

‘reverse’,
Also try the len() function to see how 'sort’]

many things are in the list: len(list_1)

Try dir(list_1)

= List have a number of built-in functions

BOSTON
UNIVERSITY

List Indexing

= Elements in a list are accessed by an index number.

= |ndex #'s start at 0.

= LISt X=['a'l 'b'l 'C'I 'd' I'e']
= Firstelement: x[0] =2 'a'
= Nth element: x[2] =2 'c'
= Lastelement: x[-1]=2> 'e'
= Next-to-last: x[-2]1=2> 'd4d’

BOSTON
UNIVERSITY

List Slicing

= Slice syntax:

BOSTON
UNIVERSITY

X[start:end:step]

x=['a', 'b', 'c¢', 'd" ,'e']
x[0:1] = ['a']

x[0:2] = ['a','b']

x[-3:1 =2 ['¢', 'd'", '"e']

Third from the end to the end
x[2:5:2] =2 ['c', 'e']

The start value is inclusive, the end value iIs exclusive.

Start is optional and defaults to O.
Step Is optional and defaults to 1.

Leaving out the end value means “go to the end”
Slicing always returns a new list copied from the existing list

List assignments and deletions

= Lists can have their elements overwritten or deleted (with the del) command.
= Note the del command does not use parentheses — it's sort of like a function call.

X:[VaV, 'b'[VCV, Vd' ,VeV]
x[0] = =3.14 > x is now [-3.14, 'b', 'c', 'd', 'e']

del x[-1] 2 x is now [-3.14, 'b', 'c', 'd']

BOSTON
UNIVERSITY

DIY Lists

= |n the Spyder editor try the following things:

= Assign some lists to some variables. a=[1,2,3] b =3*xyz]
= Try an empty list, repeated elements, initial set of elements

= Addtwo lists: a+ b What happens?
= Try list indexing, deletion, functions from dir(my _list)

= Try assigning the result of a list slice to a new variable

BOSTON
UNIVERSITY

More on Lists and Variables

_ def change list(my list, val):
= What happens when we pass alistto a if len(my list) > @:
function? first _val = my_list.pop(©)
my_ list.extend([val, first_vall])
return my_list

-

—— b

hange_ligt(x,ie)

Do we need the return
_ o change_list(x, 20)
= Or we do an assignment with it?

L !

T g L

change_list(y,-1.5)
print(x)

Let's visualize it!

https://pythontutor.com/visualize.html#code=def%20change_list%28my_list,%20val%29%3A%0A%20%20%20%20if%20len%28my_list%29%20%3E%200%3A%0A%20%20%20%20%20%20%20%20first_val%20%3D%20my_list.pop%280%29%0A%20%20%20%20my_list.extend%28%5Bval,%20first_val%5D%29%0A%20%20%20%20return%20my_list%20%20%20%0A%0Ax%3D%5B1,2%5D%0A%0A%23%20call%20change_list,%20overwrite%20x%0Ax%20%3D%20change_list%28x,10%29%0A%0A%23%20Do%20we%20need%20the%20return%20value%3F%0Achange_list%28x,%2020%29%0A%0A%23%20What%20about%20an%20assignment...%0Ay%20%3D%20x%0Achange_list%28y,-1.5%29%0Aprint%28x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Copying Lists

= How to copy (2 ways...there are more!):
=y = x[:] OF y=1list (x)

= Many data types in Python have this same behavior

BOSTON
UNIVERSITY

	Slide 1: Introduction to Python Part 1 v0.9
	Slide 2: About You
	Slide 3: RCS Team and Expertise
	Slide 4: Python on the SCC
	Slide 5: Python on the SCC
	Slide 6: Getting Python for Yourself: Anaconda
	Slide 7: Spyder – a Python development environment
	Slide 8: The Spyder IDE
	Slide 9: Tutorial Outline – Part 1
	Slide 10: Some History
	Slide 11: Compiled Languages (ex. C++ or Fortran)
	Slide 12: Interpreted Languages (ex. Python or R)
	Slide 13: The Python Prompt
	Slide 14: Operators
	Slide 15: Try Python as a calculator
	Slide 16: Operators
	Slide 17: More Operators
	Slide 18: Comments
	Slide 19: Spyder Cells
	Slide 20: Variables
	Slide 21: Variables cont’d
	Slide 22: Variable Data Types
	Slide 23: Variable Data Types
	Slide 24: Variable modifying operators
	Slide 25: Strings
	Slide 26: Functions
	Slide 27: Python functions
	Slide 28: Sample Built-In Functions
	Slide 29: Visualize a Function Call
	Slide 30: Write a Function
	Slide 31: Which code sample is easier to read?
	Slide 32: Which code sample is easier to read?
	Slide 33: The Use of Indentation
	Slide 34: Function Return Values
	Slide 35: Function arguments
	Slide 36: For Loops
	Slide 37: Project Euler Problem 6
	Slide 38: Lists
	Slide 39: Making a list and checking it twice…
	Slide 40: List functions
	Slide 41: List Indexing
	Slide 42: List Slicing
	Slide 43: List assignments and deletions
	Slide 44: DIY Lists
	Slide 45: More on Lists and Variables
	Slide 46: Copying Lists

