Python with Dask

Research Computing Services
IS&T

BOSTOIN
UNIVERSITY

Dask: “Scale the Python tools that you love”

= Dask is an open source Python library for parallel computing.
3 high level APIs:

= DataFrame — parallel Pandas DataFrames
= Array — parallel Numpy arrays (multidimensional numeric arrays)
= Bag — parallel Python collections (lists, sets, etc)

= Low-level APIs:
= Delayed and Futures — parallel Python functions, loops, and more

Parallelization can scale from using all the cores on your laptop to using
whole clusters with hundreds of cores.

BOSTON
UNIVERSITY

https://www.dask.org/

Installation

= See the Dask install instructions
= Conda environments:

= conda install dask -c conda-forge

= Python virtual envs:
" python -m pip install "dask[complete]"

= Anaconda: Open Navigator, choose Environments on the left column.

= Next to the base environment, open a Terminal or Command window.
= Enter: conda install dask -c conda-forge

= SCC.: already part of recent python3 and academic-ml modules.

5
UNI

https://docs.dask.org/en/stable/install.html

SCC Tutorial using Jupyter Notebooks

= Open a web browser and go to: scc-ondemand.bu.edu
= Create a Jupyter Notebook session;

Use python3/3.12.4 module.

Choose the lab Interface.

Leave the Working Directory blank.

Request 4 cores

Set the number of hours to 3.

= In the Login Nodes menu, pick a login node, and in the command line enter:

" /net/sccl/scratch/setup dask tutorial.sh

= Open the Jupyter session in OnDemand and you're ready to go.

BOSTON
UNIVERSITY

First, some Pandas

= Open the pandas_bikes.ipynb notebook.

= This pulls ride data from the Bluebikes
bike share program.

= |t calculates some simple guantities.

= 2011 trip data: ~11MB, ~140k rows.

BOSTON
UNIVERSITY

https://s3.amazonaws.com/hubway-data/index.html

BOSTON

UNIVERSITY

Dask basics

January, 2016

Febrary, 2016

March, 2016

April, 2016

May, 2016

Source; Nvidia

Writes high level code Turns into a task graph

(NumPy/Pandas/Scikit-Learn)

Executes on parallel
and distributed

hardware
Using Dask you can develop a solution on your laptop using a subset of your data

You can then deploy that exact code onto systems and use potentially thousands of
CPUs to process the full data set.

Dask Task Graph

Embarrassingly Parallel MapReduce Full Task Scheduling

O—-0—-0—0—O— O-O-.
O—Q/O\O

O—-0O—-0—-0—O— OOy’

O—-0—-0—0—-0 O-O~

O-0-0-0-0
= The task graph is the series of computations that solve a given problem.

P99%

= |n Dask you set up a computation then call a compute() method on a Dask object to
trigger the actual computing.
Other methods that trigger computations: persist() and take()
= Dask will optimize the process of reading data using multiple processors, work within
memory limits, store intermediate results, etc. to produce the final product.

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/graphs.html

Dask Data Structures

= DataFrame — based on Pandas DataFrames.

= Array — based on Numpy arrays
= Bag — based on Python collections, like a Python list.

BOSTON
UNIVERSITY

= DataFrame docs
= The dask.DataFrame is almost completely compatible

Da.ta.F ram e with a Pandas DataFrame

= Dask DataFrames can be spread across multiple
cores/computers for parallel computations.

= You can easily transition your code from plain Pandas to
- Dask.

Dask DataFrame API Reads ALL CSVs pandas DataFrame API Reads ONE CSV

==> import dask.dataframe as dd / >>> import pandas as pd /

Dask >»>» df = dd.read_csv('2014-%_ csv') #>> df = pd.read_csv('2014-1.c5v')
" DataFrame > df.headO >>> df .head)
Pandas < 4 -l
@ 1 a @ 2
DataFrame | 2 b 1 2 b
2 1 ¢ Creates N
a task -
3 4 a raoh 3 4 z
45 b grap 45 b
) 5 6 ¢ 5 6 ¢
> df2 = df[df.y == 'a'l.x + 1 >»> df2 = df[df.y == X+
Executes —————— > x> df2. compute() »>>> df2
the task @ 2 @ 2
graph 3 5 3 5
Mame: x, dtype: intad4 Mame: x, dtype: intod

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/dataframe.html

Array

= Array

= Breaks up a Numpy ndarray into smaller arrays.

Numpy
Array

= Allows for processing ndarrays that need more memory than is available on the

computer.

= Defaults to multithreaded computations that use shared memory to avoid data
communication costs.

BOSTON
UNIVERSITY

| Dask

Array

https://docs.dask.org/en/stable/array.html

Bag I

— filter() —

= Bag
= Implements list-style processing with functions like map (),
filter (), groupby () on collections of generic Python
objects.

= Example:

= read a set of JSON data files and convert them into
Python data structures.

= Filter out bad data.
= Reformat data into a DataFrame compatible format
= Convert to a Dask DataFrame, continue processing.

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/bag.html

Dask-ify the Pandas Notebook

= Now open the notebook dask_bikes.ipynb

= This is a straightforward conversion of the calls to Pandas & Numpy to
use equivalent ones with Dask DataFrames and Arrays.

BOSTON
UNIVERSITY

Dask Bag Example

= Use a Bag when the data source does not easily match the Array or DataFrame
datatypes.

= |t acts like a parallel Python list or tuple
= However: you cannot index it or use it with 'for' loops.

= Process a bag by applying functions that transform elements like the Python map () and
filter () functions.

= Bag types can be converted to Arrays or DataFrames or saved as files.

= QOpen dask _bag.ipynb and let’'s give it a try!

BOSTON
UNIVERSITY

So far...

= We've tried the 3 basic data types: Array, DataFrame, Bag.

= The Dask DataFrame was slower than Pandas when analyzing a single
file.

= There is overhead associated with building, optimizing, and executing the task graph.
= Dask DataFrames add overhead to its use of Pandas so for a single file Pandas is faster.

= Both the Bag and DataFrame made it trivially easy to scale up from single
file processing to many file processing.
= A similar scaling could be shown going from reading a small file to a giant file.

BOSTON
UNIVERSITY

Partitioning

= Conceptually, a = To stay within
Dask DataFrame memory limits and
Ba Array is one big — facilitate computing
thing we parts of the task ~ —
manipulate. graph, it is broken
down into pieces
called partitions
= Partition sizes are auto-computed by = A DataFrame is partitioned into = An Array is partitioned (“chunked”) by
default but can be changed using the mini-Pandas DataFrames. dimension,
repartition() function. = E.g. a 3D array of size 1000x200x6
= A Bag is partitioned into tuples = 6 1000x200 chunks
= |f filtering and other transformations of Bag elements. = 40 50x200x3 chunks
have reduced the amount of data you = Reading files, probably = etc

may need to manually repartition. one-per-file
= Reading lines-per-file, into

BOSTON tuples of lines.
UNIVERSITY

. - # The entire Dask Data Frame
DataFrame Partitions and /O | «use oo into nenory on ene
main processor, be careful!
pandas df = dask df.compute ()
pandas df.to csv('filename.csv')

= |magine you have a large Dask DataFrame in
memory
= Say, representing 600M rows and 20 columns. It is split

dask df.to csv('filename.csv")

into 1000 partitions. # each partit%on gets written
separately in parallel:
= How can you make a single CSV file from this? # filename 01.csv
i filename 02.csv
it ...etc...
= Let's check the # Then you have to join them
together with your own code.

= Here’s the list of DataFrame to storage
functions.

Partitions are appended in turn:
dask df.to csv('filename.csv',

single file=True)
filename.csv is written

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/generated/dask.dataframe.to_csv.html
https://docs.dask.org/en/stable/dataframe-api.html#store-dataframes
https://docs.dask.org/en/stable/dataframe-api.html#store-dataframes

compute() and persist()

= Define a dataframe and
do some filtering

= compute() is called
twice

= This triggers two
evaluations of the task
graphs, starting from the
file reads.

BOSTON
UNIVERSITY

import dask.dataframe as dd

read some CSV files containing

sales data for some stuff.

df = dd.read csv('/path/to/*.csv')

do some cleaning

df = df.dropna()

ignore low sales counts

df = df[df['units sold'] > 1000]

Get some info

med count = df['units sold'].median() .compute ()
print(f'Median sales: {med count}"')

Group by salesperson

sales info = df.groupby('salesperson')['units sold'].\
sum () .compute ()
sales info --> Pandas dataframe

print(sales info)

= This approach preserves memory at the
expense of computational time.

compute() and persist()

= .persist() — evaluate the
task graph to this point,
then keep everything in

memory.
= |nput files are read once.

= The two calls to
compute() then execute
off the same dataframe.

= Dask has other ways to
manipulate the task
graph.

BOSTON
UNIVERSITY

import dask.dataframe as dd

read some CSV files containing
sales data for some stuff.

df = dd.read csv('/path/to/*.csv")
do some cleaning

df = df.dropna()

ignore low sales counts

df = df[df['units sold'] > 1000]

Compute the task graph to this
point and keep it in memory.
df = df.persist()

Get some info
med count = df['units sold'].median() .compute ()

print (f'Median sales: {med count}"')

Group by salesperson

sales info = df.groupby('salesperson')['units sold'].\
sum () .compute ()
sales info --> Pandas dataframe

print(sales info)

https://docs.dask.org/en/stable/graph_manipulation.html

Scaling up Dask Task Graphs

= Dask can automatically parallelize many parts of its task graph.

= You can choose to parallelize with threads, processes, or a mixture of
both.

= Threads:

= good choice when work mostly involves Arrays or DataFrames
= These mostly call into numpy and Pandas functions and don’t use many Python data types.

= Processes:

best when using plain Python types (lists, strings, dicts, custom Python classes), Dask Bags, or
Dask delayed.

launches multiple copies of Python that exchange data as needed.

UNIVERSITY

https://docs.dask.org/en/stable/scheduling.html

Parallel Computations

= The notebook dask_bikes parallel.ipynb allows Dask to do some auto-parallelization.
= There’s just 1 cell added to the previous notebook.

= This is done by enabling the Dask Scheduler to use parallel threads, where it is possible
to do so.
= This uses the provided get_n_cores() function that works nicely on the SCC.
= Depending on what you're doing, you may get good performance just using this approach.

import dask
dask.config.set({scheduler="threads', num workers=get n cores())

= There is an option to use the ‘processes’ option to launch multiple processes, but this is not the
recommended approach (see distributed slides coming up)

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/scheduling.html

Dask.distributed

= The Dask.distributed library:

= Choose threads or processes
= Limit memory usage
= Lower-level access to parallel computations

= This should be considered a companion to the main Dask library.
= Allows for tighter control of parallel computations, greater design flexibility.

= Now revisit our dask bikes parallel_dist.ipynb notebook.
= This has been re-worked to properly use Dask.distributed to compute via processes.
= Note there’s a plain Python copy too: dask_bikes parallel_dist.py

BOSTON
UNIVERSITY

https://distributed.dask.org/en/stable/

Highly Parallel Dask Computations

= Once you've got a Dask-based computation to run on the SCC, you can use lots of cores,
try requesting 4, 8,16, 28, or 32.
= These are best submitted as non-interactive batch jobs to avoid long waits in OnDemand.

= Usetheif name == main__’: section to make sure that Dask.distributed launches
correctly.

= Experiment with processes vs. threads for performance:
= 1 thread, 16 processes
= 2 threads, 8 processes
= Etc.

BOSTON
UNIVERSITY

Multi-node Dask

= This uses the Dask-MPI library.

= |f you have a Dask-based calculation that requires multiple nodes on the
SCC, contact RCS and we’ll help you get this set up.

BOSTON
UNIVERSITY

https://mpi.dask.org/en/latest/

Let’s calculate = with Dask.delayed
delayed calc_pi.ipynb

= Parallelization tool for any Python

) R=1
function. /

= This is the tool when you want to
parallelize Python function calls

= Pick N random points in the upper
guadrant, count how many are in the
circle (N.), and then calculate: 4 N,

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/delayed.html

Dask Performance

= Rather than re-creating the info here, let's go take a look at the docs for:

= Debugqging and Performance

BOSTON
UNIVERSITY

https://docs.dask.org/en/stable/best-practices.html
https://docs.dask.org/en/stable/debugging-performance.html

Incorporating Dask into Your Code

= Starting points depending on what your code does:
= Pandas DataFrames -> Dask DataFrame
= Large Numpy arrays > Dask Array (or Xarray + Dask)

= Functions that process and manipulate various kinds of data that don’t neatly fit into
DataFrames (of any kind) - Dask Bag

= Python multiprocessing or joblib libraries for Python-level parallelism - Dask Delayed
= And of course these can be mixed & matched any way that seems appropriate.
= Parallelism:

= Mostly Dask DataFrames or Arrays - try the simple threaded scheduler
= Anything else - dask.distributed processes (single or multithreaded)

BOSTON
UNIVERSITY

https://docs.xarray.dev/en/stable/

|::| pandas

J

f NumPy

F<
nu
N

O PyTorch

PREFECT : I |

- Ecosystem

dmilc

XGBoost

j xarray

..... ” Many software projects integrate with Dask or use Dask to power
components of their infrastructure. Dask enables pandas, NumPy, scikit-
learn, PyTorch, XGBoost, Xarray, Prefect, and RAPIDS, among many others.

BOSTON
UNIVERSITY

	Slide 1: Python with Dask
	Slide 2: Dask: “Scale the Python tools that you love”
	Slide 3: Installation
	Slide 4: SCC Tutorial using Jupyter Notebooks
	Slide 5: First, some Pandas
	Slide 6: Dask basics
	Slide 7: Dask Task Graph
	Slide 8: Dask Data Structures
	Slide 9: DataFrame
	Slide 10: Array
	Slide 11: Bag
	Slide 12: Dask-ify the Pandas Notebook
	Slide 13: Dask Bag Example
	Slide 14: So far…
	Slide 15: Partitioning
	Slide 16: DataFrame Partitions and I/O
	Slide 17: compute() and persist()
	Slide 18: compute() and persist()
	Slide 19: Scaling up Dask Task Graphs
	Slide 20: Parallel Computations
	Slide 21: Dask.distributed
	Slide 22: Highly Parallel Dask Computations
	Slide 23: Multi-node Dask
	Slide 24: Dask.delayed
	Slide 25: Dask Performance
	Slide 26: Incorporating Dask into Your Code
	Slide 27

