
Python with Dask

Research Computing Services

IS&T

Dask: “Scale the Python tools that you love”

▪ Dask is an open source Python library for parallel computing.

▪ 3 high level APIs:
▪ DataFrame – parallel Pandas DataFrames

▪ Array – parallel Numpy arrays (multidimensional numeric arrays)

▪ Bag – parallel Python collections (lists, sets, etc)

▪ Low-level APIs:
▪ Delayed and Futures – parallel Python functions, loops, and more

▪ Parallelization can scale from using all the cores on your laptop to using

whole clusters with hundreds of cores.

https://www.dask.org/

Installation

▪ See the Dask install instructions

▪ Conda environments:
▪ conda install dask -c conda-forge

▪ Python virtual envs:
▪ python -m pip install "dask[complete]"

▪ Anaconda: Open Navigator, choose Environments on the left column.
▪ Next to the base environment, open a Terminal or Command window.

▪ Enter: conda install dask -c conda-forge

▪ SCC: already part of recent python3 and academic-ml modules.

https://docs.dask.org/en/stable/install.html

SCC Tutorial using Jupyter Notebooks

▪ Open a web browser and go to: scc-ondemand.bu.edu
▪ Create a Jupyter Notebook session:

▪ Use python3/3.12.4 module.

▪ Choose the lab Interface.

▪ Leave the Working Directory blank.

▪ Request 4 cores

▪ Set the number of hours to 3.

▪ In the Login Nodes menu, pick a login node, and in the command line enter:

▪ /net/scc1/scratch/setup_dask_tutorial.sh

▪ Open the Jupyter session in OnDemand and you’re ready to go.

First, some Pandas

▪ Open the pandas_bikes.ipynb notebook.

▪ This pulls ride data from the Bluebikes

bike share program.

▪ It calculates some simple quantities.

▪ 2011 trip data: ~11MB, ~140k rows.

https://s3.amazonaws.com/hubway-data/index.html

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Executes on parallel

and distributed

hardware

Source; Nvidia

Dask basics

▪ Using Dask you can develop a solution on your laptop using a subset of your data.

▪ You can then deploy that exact code onto systems and use potentially thousands of

CPUs to process the full data set.

Dask Task Graph

▪ The task graph is the series of computations that solve a given problem.

▪ In Dask you set up a computation then call a compute() method on a Dask object to

trigger the actual computing.
▪ Other methods that trigger computations: persist() and take()

▪ Dask will optimize the process of reading data using multiple processors, work within

memory limits, store intermediate results, etc. to produce the final product.

https://docs.dask.org/en/stable/graphs.html

Dask Data Structures

▪ DataFrame – based on Pandas DataFrames.

▪ Array – based on Numpy arrays

▪ Bag – based on Python collections, like a Python list.

DataFrame

▪ DataFrame docs

▪ The dask.DataFrame is almost completely compatible

with a Pandas DataFrame

▪ Dask DataFrames can be spread across multiple

cores/computers for parallel computations.

▪ You can easily transition your code from plain Pandas to

Dask.

Creates

a task

graph

Executes

the task

graph

Reads ALL CSVs Reads ONE CSV

https://docs.dask.org/en/stable/dataframe.html

Array

▪ Array
▪ Breaks up a Numpy ndarray into smaller arrays.

▪ Allows for processing ndarrays that need more memory than is available on the

computer.

▪ Defaults to multithreaded computations that use shared memory to avoid data

communication costs.

Numpy

Array
Dask

Array

https://docs.dask.org/en/stable/array.html

Bag

▪ Bag
▪ Implements list-style processing with functions like map(),

filter(), groupby() on collections of generic Python

objects.

▪ Example:

▪ read a set of JSON data files and convert them into

Python data structures.

▪ Filter out bad data.

▪ Reformat data into a DataFrame compatible format

▪ Convert to a Dask DataFrame, continue processing.

filter()

https://docs.dask.org/en/stable/bag.html

Dask-ify the Pandas Notebook

▪ Now open the notebook dask_bikes.ipynb

▪ This is a straightforward conversion of the calls to Pandas & Numpy to

use equivalent ones with Dask DataFrames and Arrays.

Dask Bag Example

▪ Use a Bag when the data source does not easily match the Array or DataFrame

datatypes.

▪ It acts like a parallel Python list or tuple

▪ However: you cannot index it or use it with 'for' loops.

▪ Process a bag by applying functions that transform elements like the Python map()and

filter() functions.

▪ Bag types can be converted to Arrays or DataFrames or saved as files.

▪ Open dask_bag.ipynb and let’s give it a try!

So far…

▪ We’ve tried the 3 basic data types: Array, DataFrame, Bag.

▪ The Dask DataFrame was slower than Pandas when analyzing a single

file.
▪ There is overhead associated with building, optimizing, and executing the task graph.

▪ Dask DataFrames add overhead to its use of Pandas so for a single file Pandas is faster.

▪ Both the Bag and DataFrame made it trivially easy to scale up from single

file processing to many file processing.
▪ A similar scaling could be shown going from reading a small file to a giant file.

Partitioning

▪ Conceptually, a

Dask DataFrame

Ba Array is one big

thing we

manipulate.

▪ An Array is partitioned (“chunked”) by

dimension,

▪ E.g. a 3D array of size 1000x200x6

▪ 6 1000x200 chunks

▪ 40 50x200x3 chunks

▪ etc

▪ To stay within

memory limits and

facilitate computing

parts of the task

graph, it is broken

down into pieces

called partitions

▪ Partition sizes are auto-computed by

default but can be changed using the

repartition() function.

▪ If filtering and other transformations

have reduced the amount of data you

may need to manually repartition.

▪ A DataFrame is partitioned into

mini-Pandas DataFrames.

▪ A Bag is partitioned into tuples

of Bag elements.

▪ Reading files, probably

one-per-file

▪ Reading lines-per-file, into

tuples of lines.

DataFrame Partitions and I/O

▪ Imagine you have a large Dask DataFrame in

memory

▪ Say, representing 600M rows and 20 columns. It is split

into 1000 partitions.

▪ How can you make a single CSV file from this?

▪ Let’s check the DataFrame.to_csv() docs

▪ Here’s the list of DataFrame to storage

functions.

The entire Dask Data Frame

must go into memory on the

main processor, be careful!

pandas_df = dask_df.compute()

pandas_df.to_csv('filename.csv')

dask_df.to_csv('filename.csv')

each partition gets written

separately in parallel:

filename_01.csv

filename_02.csv

...etc...

Then you have to join them

together with your own code.

Partitions are appended in turn:

dask_df.to_csv('filename.csv',

single_file=True)

filename.csv is written

https://docs.dask.org/en/stable/generated/dask.dataframe.to_csv.html
https://docs.dask.org/en/stable/dataframe-api.html#store-dataframes
https://docs.dask.org/en/stable/dataframe-api.html#store-dataframes

compute() and persist()

▪ Define a dataframe and

do some filtering

▪ compute() is called

twice

▪ This triggers two

evaluations of the task

graphs, starting from the

file reads. ▪ This approach preserves memory at the

expense of computational time.

import dask.dataframe as dd

read some CSV files containing

sales data for some stuff.

df = dd.read_csv('/path/to/*.csv')

do some cleaning

df = df.dropna()

ignore low sales counts

df = df[df['units_sold'] > 1000]

Get some info

med_count = df['units_sold'].median().compute()

print(f'Median sales: {med_count}')

Group by salesperson

sales_info = df.groupby('salesperson')['units_sold'].\

sum().compute()

sales_info --> Pandas dataframe

print(sales_info)

compute() and persist()

▪ .persist() – evaluate the

task graph to this point,

then keep everything in

memory.
▪ Input files are read once.

▪ The two calls to

compute() then execute

off the same dataframe.

▪ Dask has other ways to

manipulate the task

graph.

import dask.dataframe as dd

read some CSV files containing

sales data for some stuff.

df = dd.read_csv('/path/to/*.csv')

do some cleaning

df = df.dropna()

ignore low sales counts

df = df[df['units_sold'] > 1000]

Compute the task graph to this

point and keep it in memory.

df = df.persist()

Get some info

med_count = df['units_sold'].median().compute()

print(f'Median sales: {med_count}')

Group by salesperson

sales_info = df.groupby('salesperson')['units_sold'].\

sum().compute()

sales_info --> Pandas dataframe

print(sales_info)

https://docs.dask.org/en/stable/graph_manipulation.html

Scaling up Dask Task Graphs

▪ Dask can automatically parallelize many parts of its task graph.

▪ You can choose to parallelize with threads, processes, or a mixture of

both.

▪ Threads:
▪ good choice when work mostly involves Arrays or DataFrames

▪ These mostly call into numpy and Pandas functions and don’t use many Python data types.

▪ Processes:
▪ best when using plain Python types (lists, strings, dicts, custom Python classes), Dask Bags, or

Dask delayed.

▪ launches multiple copies of Python that exchange data as needed.

https://docs.dask.org/en/stable/scheduling.html

Parallel Computations

▪ The notebook dask_bikes_parallel.ipynb allows Dask to do some auto-parallelization.

▪ There’s just 1 cell added to the previous notebook.

▪ This is done by enabling the Dask Scheduler to use parallel threads, where it is possible

to do so.

▪ This uses the provided get_n_cores() function that works nicely on the SCC.

▪ Depending on what you’re doing, you may get good performance just using this approach.

▪ There is an option to use the ‘processes’ option to launch multiple processes, but this is not the

recommended approach (see distributed slides coming up)

https://docs.dask.org/en/stable/scheduling.html

Dask.distributed

▪ The Dask.distributed library:
▪ Choose threads or processes

▪ Limit memory usage

▪ Lower-level access to parallel computations

▪ This should be considered a companion to the main Dask library.
▪ Allows for tighter control of parallel computations, greater design flexibility.

▪ Now revisit our dask_bikes_parallel_dist.ipynb notebook.
▪ This has been re-worked to properly use Dask.distributed to compute via processes.

▪ Note there’s a plain Python copy too: dask_bikes_parallel_dist.py

https://distributed.dask.org/en/stable/

Highly Parallel Dask Computations

▪ Once you’ve got a Dask-based computation to run on the SCC, you can use lots of cores,

try requesting 4, 8,16, 28, or 32.

▪ These are best submitted as non-interactive batch jobs to avoid long waits in OnDemand.

▪ Use the if __name__==‘__main__’: section to make sure that Dask.distributed launches

correctly.

▪ Experiment with processes vs. threads for performance:

▪ 1 thread, 16 processes

▪ 2 threads, 8 processes

▪ Etc.

Multi-node Dask

▪ This uses the Dask-MPI library.

▪ If you have a Dask-based calculation that requires multiple nodes on the

SCC, contact RCS and we’ll help you get this set up.

https://mpi.dask.org/en/latest/

Dask.delayed

▪ Parallelization tool for any Python

function.

▪ This is the tool when you want to

parallelize Python function calls

▪ Pick N random points in the upper

quadrant, count how many are in the

circle (Nc), and then calculate:

R=1

Let’s calculate  with Dask.delayed

delayed_calc_pi.ipynb

𝜋 ≈
4 𝑁𝑐

𝑁

https://docs.dask.org/en/stable/delayed.html

Dask Performance

▪ Rather than re-creating the info here, let’s go take a look at the docs for:

▪ Best Practices

▪ Debugging and Performance

https://docs.dask.org/en/stable/best-practices.html
https://docs.dask.org/en/stable/debugging-performance.html

Incorporating Dask into Your Code

▪ Starting points depending on what your code does:
▪ Pandas DataFrames → Dask DataFrame

▪ Large Numpy arrays → Dask Array (or Xarray + Dask)

▪ Functions that process and manipulate various kinds of data that don’t neatly fit into

DataFrames (of any kind) → Dask Bag

▪ Python multiprocessing or joblib libraries for Python-level parallelism → Dask Delayed

▪ And of course these can be mixed & matched any way that seems appropriate.

▪ Parallelism:
▪ Mostly Dask DataFrames or Arrays → try the simple threaded scheduler

▪ Anything else → dask.distributed processes (single or multithreaded)

https://docs.xarray.dev/en/stable/

	Slide 1: Python with Dask
	Slide 2: Dask: “Scale the Python tools that you love”
	Slide 3: Installation
	Slide 4: SCC Tutorial using Jupyter Notebooks
	Slide 5: First, some Pandas
	Slide 6: Dask basics
	Slide 7: Dask Task Graph
	Slide 8: Dask Data Structures
	Slide 9: DataFrame
	Slide 10: Array
	Slide 11: Bag
	Slide 12: Dask-ify the Pandas Notebook
	Slide 13: Dask Bag Example
	Slide 14: So far…
	Slide 15: Partitioning
	Slide 16: DataFrame Partitions and I/O
	Slide 17: compute() and persist()
	Slide 18: compute() and persist()
	Slide 19: Scaling up Dask Task Graphs
	Slide 20: Parallel Computations
	Slide 21: Dask.distributed
	Slide 22: Highly Parallel Dask Computations
	Slide 23: Multi-node Dask
	Slide 24: Dask.delayed
	Slide 25: Dask Performance
	Slide 26: Incorporating Dask into Your Code
	Slide 27

