
Introduction to Parallel Programming Concepts

Summer 2025

Research Computing Services

IS & T

Outline

▪ Parallel Algorithms

▪ Hardware

▪ Parallel Implementations

▪ Processes and Threads

▪ Libraries

▪ Your code

▪ Pitfalls

Introduction

▪ Many programs can perform simultaneous operations, given multiple

processors to perform the work.

▪ Usually, the burden of managing this lies on the programmer:

▪ Implement parallel code in the programming language

▪ Make use of implicit parallelization in programming languages

▪ Indirectly by using libraries that perform parallel calculations.

▪ Deliberately by choosing libraries or software systems that assist in running parallel

code.

Limits (“bounds”) on Program Speed

▪ Input/Output (I/O): The rate at which data can be read from a disk, a

network file server, a remote server, a sensor, a user’s physical inputs,

etc. limits the performance of the program.

▪ Memory: The quantity of memory on the system limits performance.
▪ Example: a computer has 16 GB of RAM, a data file is 64 GB in size.

▪ CPU (or compute): The speed of the processor is the limit on

performance.

Why Parallelize?

▪ Processors are not

getting much faster

these days

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Amdahl’s Law

▪ The speedup ratio S is the

ratio of time between the

serial code (T1) and the time

when using N workers (TN):

𝑆 =
𝑇1
𝑇𝑁

=
𝑇1

𝑓 +
1 − 𝑓
𝑁

𝑇1

N = number of threads or

processes

f = fraction of program that

is serial

▪ This is the theoretical best speedup

achievable with parallelization.

Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing

Strong and Weak Scaling

▪ Amdahl’s Law describes the speedup for strong scaling:
▪ For a fixed problem size, how fast can we solve it with more processors?

▪ Weak scaling:
▪ How big of a problem size can we solve if we add more processors?

▪ Example:

▪ Simulate traffic flow in Boston – say this takes 1 hour on 1 processor.

▪ If we increase the problem size by 8 (Boston and some surrounding cities) and use 8

processors, will it still run in 1 hour?

▪ Gustafson’s Law

▪ s is the fraction of the program time that runs serially

▪ p is the fraction that can run in parallel (s + p = 1)

▪ New formula for the speedup S:
𝑆 = 𝑠 + 𝑁𝑝

Some things can’t be done in parallel.

▪ Gestation time for 1 female

elephant to produce 1 calf: 18

months.

▪ 18 elephants cannot produce a calf

in 1 month.

Example 1: Daily Average Temperatures

▪ Each row is the average daily temperature

from 4 airports in Massachusetts for 2022.

▪ We want to find the average daily

temperature across all 4 airports.

Day

Example 1: Daily Average Temperatures

▪ Serial calculation: Sum vertically then

divide.
▪ For each day:

▪ add the temperatures for each airport

▪ then divide by 4.

▪ Given 2 computer processors, how can

we do this so that they do this

computation in parallel?

Day

Example 2: Gaussian Image Blurring

▪ A selected block of pixels is multiplied

by numeric values in a kernel and

summed to produce a single output

value.

▪ That value is written to the output

image.

▪ The selection is moved by 1 row (or 1

col) and the new block of pixels is

again multiplied to get a new value,

and so on.

Example 2: Gaussian Image Blurring

▪ How to parallelize this?

▪ Let’s use 4 processors.

▪ The image is 1033x882 pixels. The

kernel is 9x9 pixels.

Example 3. Physical Modeling

▪ Simulate the air flow over a wind

turbine.

▪ Pressure, speed, direction at thousands of

points in 3D space are determined by

solving the Navier-Stokes equation.

▪ Run the simulation for several wind speeds

(say 5, 10, 15, and 25 m/s)

▪ A number of different algorithms

are used to do the calculations.

Vortices created from spinning turbine blades in a 10 m/s wind.

Yuwei Li, Kwang-Jun Paik, Tao Xing, Pablo M. Carrica, Dynamic overset CFD simulations of wind turbine

aerodynamics, Renewable Energy, Volume 37, Issue 1, 2012, Pages 285-298.

Example 3. Physical Modeling

▪ The simulation is broken down spatially

into a 3D grid of cells with varying cell

sizes.

▪ Higher cell density where there’s a lot of

things changing quickly, lower where there’s

less action.

▪ How might this computation be

parallelized?
▪ Let’s use 8 processors.

Example 4: k-mer counting

▪ k-mers are repeated sets of nucleotides in genomic sequences. k is the

length of the set.
▪ Example: AGTCCC

▪ Split into k-mers of length 3: AGT, GTC, TCC, CCC, …

▪ A common problem in genomics is creating a histogram of all possible k-

mers from a data file for a given length k.

AGTCCCCGTCTTGCCGCGCGGGGGCGGGCGCGGGAAAAAAGCCGCGCGGGGGCGC

CCGCGGGAAGGCAGCCCCGCGGCGCGCGGGGGGAGGGGCGGCGCCCGCGGGGGAG

CGGCCGGCTCCGGGGGAGGGACGGGGAAGGGGGCGCGCGGGGCTGCCCTGCCGCC

CGCCCGCCGCCGCCGCCCGCCTTCGCGCCCCCCCCCAAAAAACACCCCCCCCGGA

…imagine this in a file a few GB in size…

Example 4: k-mer counting

▪ Tasks:
▪ Read each line from the file. The file is compressed to save disk space.

▪ In each line, find all possible k-mers for a fixed value k.

▪ Store all k-mers that are found and how often they occurred.

▪ Repeat for the next line.

▪ The output is the histogram for the whole file:

3-mer Occurrences

AGT 203

GTC 123

TCC 583

CCC 875

…etc…

How can we split this up

into parallel

computations?

Which steps can

happen in parallel?

Example 4: k-mer counting

▪ A mix of serial and parallel computations.
▪ Maybe P = M/N parallel computations (parallelism set by

problem size)

▪ Maybe fix P=4 and choose N=M/4

▪ What sort of speed up can we get?

Uncompressed
file with M lines

Compute histogram
for N lines

…
P

 p
a
ra

lle
l
ta

s
k
s
…

Join histograms
Final k-mer
histogram

Compressed
file with M lines

The basics of the Work-Depth Model
parallel algorithms

▪ An abstract way to think about parallel algorithms
▪ Abstract away number of processors, I/O, and so on so the analysis is independent of

implementation, inter-process communication, etc.

▪ This can be connected back to Amdahl’s Law for parallel speedups.

▪ Work (T1): total amount of tasks to complete for a single processor

▪ Depth (T∞): longest length of serial computations that must be performed.
▪ i.e. the time taken if you have an infinite number of parallel computations so that their

computation time can be ignored.

▪ Maximum speedup vs. serial: 𝑆𝑚𝑎𝑥 =
𝑇1

𝑇∞

https://en.wikipedia.org/wiki/Analysis_of_parallel_algorithms

Work-Depth Model
▪ Work: Number of tasks when run serially.

▪ Just count ‘em

▪ T1 = (4 par + 2 seq) = 6
▪ for 4 parallel tasks

Compressed file
with M lines
(decompress as it’s read)

Compute histogram
for M/4 lines

4 parallel tasks

(P=4) as a concrete

example.

Join histograms
Final k-mer
histogram

▪ 𝐓𝟏 ≈ 𝐏 for a large number of

parallel tasks P if P ≫ 2

Work-Depth Model

▪ T1 ≈ P when P is large.

▪ 𝑆𝑚𝑎𝑥 =
𝑇1

𝑇∞
=

1

3
𝑃

Compressed file
with M lines

Compute histogram
for N lines

4 parallel tasks

Join histograms
Final k-mer
histogram

▪ Depth: Number of sequential tasks.

▪ T ∞ =3

▪ Speedup with 4 processors vs. serial:

 S =
𝑇1

𝑇∞
=

6

3
= 2

Work-Depth Model
now with more parallelism!

▪ 𝑆′𝑚𝑎𝑥 =
𝑇1

𝑇∞
=

𝑃1+
𝑃1
2
+2

4
≈

3

2
𝑃1

4
=

3

8
𝑃1

▪ Compare with the previous slide: this is a bit faster

but is more complicated due to the extra parallel

component.

Compressed file
with M lines

Compute histogram
for N lines

4 parallel tasks P1

Join histograms

Final k-mer
histogram

Join histograms

Join histograms

2 parallel tasks

P2 = P1 / 2

With P1=4, P2=2

▪ Work: T1 =8

▪ Depth: T ∞ = 4

▪ 𝑆′ =
𝑇1

𝑇∞
=

8

4
= 2

Outline

▪ Parallel Algorithm

▪ Hardware

▪ Parallel Implementations

▪ Processes and Threads

▪ Libraries

▪ Your code

▪ Pitfalls

Hardware for Parallel Computation

▪ Parallel computing is used on systems of all sizes, from

your smartphone to clusters of computers with thousands of

processors in total.

Lenovo ThinkSystem HPC cluster

iPhone motherboard

CPUs and cores

▪ In the beginning...a CPU plugged into a

socket in the computer.
▪ The term “core” wasn’t in use but we’d call this a 1-core

CPU today.

▪ Multiple CPU computers had multiple CPU sockets.

▪ In 2001 IBM introduced their POWER4 CPU

which embedded 2 “cores” into one physical

CPU package.
▪ The two cores are manufactured on the same physical

semiconductor die.

▪ 1 socket

AMD K5 in a Socket 7 (1996)

POWER4 circuit view

core
core

Modern configurations

▪ Quad Intel Xeon CPUs

▪ Up to 56 cores per CPU

▪ Dual AMD Epyc CPUs

▪ Up to 128 cores per CPU

▪ Single Intel CPU

▪ 4 cores (Core-i3, ~$100)

▪ 4-12 cores are very common

▪ For PC and server hardware the high end

has very high core counts.

▪ Entry-level systems still have multiple cores.

▪ All SCC compute nodes are dual socket

Intel-based systems.

▪ 16-64 total cores per compute server

High-end servers

Common desktop

CPUs and cores

▪ “CPU” typically refers today to the physical packaging of multiple cores.

▪ CPU, processor, and core are sometimes used interchangeably to mean

“core”.

1 CPU, 1 core

1 program at a time
1 CPU, 2 cores

2 programs simultaneously
1 CPU, 16 cores

16 programs simultaneously

GPU Hardware

Intel Xeon Gold 6526Y:

Clock speed: 2.8 GHz

8 instructions per cycle with AVX512

CPU - 32 cores

2.6 x 8 x 28 =

0.665 Teraflops double precision

NVIDIA Tesla A100:

Single instruction per cycle

6912 CUDA cores

9.7 Teraflops double precision

SCC CPU SCC GPU

Double precision: 64-bit floating point

The Illusion of Parallelism

▪ All modern operating system will run more programs than there are

available cores.
▪ This is called concurrency.

▪ The OS will swap the programs on and off the cores, so some execute

while the others wait their turn.
▪ Some programs are just “sleeping”, i.e. waiting for some OS event to occur

▪ If N programs are trying to compute things, then on a single core in a

given timeframe each gets 1/N of the runtime.
▪ Example: 4 programs, each running “for” loops and doing calculations.

▪ On 1 core in 1 minute each will execute for ¼ of a minute (15 sec).

Logical Cores

aka “hyperthreading” or “hardware threads”

▪ CPUs with logical cores have:
▪ additional hardware that lets a program (B) have its execution

state pre-loaded onto a core while another program (A) is

executing on that core.

▪ The extra hardware allows the OS to switch the physical core to

run the other program (from A to B) very quickly and vice-versa.

▪ For many sets of programs (especially I/O bound)

this makes better use of the physical core.
▪ When program A is waiting for data, program B quickly swaps in to

run.

Real physical core

Logical cores

Program A Program B

▪ Intel claims overall

system performance can

be 30% better.

Prog A is executing

https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html

Logical Cores (by analogy)

Real physical core

aka juggler

Logical cores aka hands

Program A Program B

Prog A is executing

No logical cores

1 juggler

2 logical cores

Still 1 juggler

▪ Without logical cores the program switching is slower.

▪ Physical core: maybe ~5-15 s to switch the running program

▪ Logical core: ~2-4x faster.

▪ Logical cores do not increase the computational resources.

Real physical core

Logical cores

Program A Program B

Program A
executing

Program B

Off in main memory

Prog A is executing

No logical cores

ballpark numbers

Logical cores in action

▪ A linear algebra matrix-matrix multiply.

▪ Absolutely a CPU-bound computation!

▪ 4 real cores, 8 logical cores.

▪ Note performance increases stop for

cores > 4.

▪ CPU-bound programs can only benefit

from real cores.

▪ You can slow down parallel code using logical

cores…

Intel i5-9300h CPU

Count Your Cores

▪ Operating system utilities are the easiest way.

▪ Windows Task Manager

▪ Right-click on the taskbar, select Task Manager

from the list

▪ Linux command: lscpu

▪ Mac OSX (Intel CPUs):

▪ Using the Terminal app

[~] sysctl -n hw.logicalcpu

8

[~] sysctl -n hw.physicalcpu

4

New CPUs: Performance and Efficiency Cores

▪ Apple M CPUs (M1, M2, etc) and recent

Intel & AMD CPUs:

▪ Performance cores: highest computing speed

▪ Efficiency cores: slower, lower power

consumption, for less important tasks

▪ AMD calls these “c cores”

▪ How to check:
▪ Use the Task Manager to get your CPU model

number.

▪ Intel: Look it up on the Intel Ark site.

▪ AMD: same but use the AMD site.

▪ Mac OSX: Use Spotlight to find the “System

Report” utility.

https://www.intel.com/content/www/us/en/ark.html#@Processors
https://www.amd.com/en/products/specifications/processors.html

Logical Cores and Your Program

▪ On your personal or lab computers, check to see if logical cores are present.

▪ If you’re CPU-bound, only use physical cores for your code.

▪ Or “performance” cores.

▪ If not … test your parallel code and time it with physical cores only and with logical

cores.

▪ Ultimately – parallel speedups depend on the nature of the algorithm so you must test.

▪ On the SCC any compute node that supports logical cores has this feature disabled.

▪ All SCC core counts are real physical cores.

SCC cores

▪ All SCC jobs set a variable, NSLOTS, that indicates the number of cores

assigned to a job.

▪ Multiple cores in a qsub script: -pe omp 4

▪ There are options in OnDemand for multiple cores.

▪ “best core numbers”: 2, 4, 8, 16, 28, 32, 36*
▪ There are job queues specifically for these multi-core jobs

▪ Example of using NSLOTS:
#!/bin/bash -l

8 core job

#$ -pe omp 8

module load python3/3. 12.4

program written to read the amount of

parallelism from the command line

python my_parallel_prog.py --npar $NSLOTS

Outline

▪ Parallel Algorithm

▪ Hardware

▪ Parallel Implementations

▪ Processes and Threads

▪ Libraries

▪ Your code

▪ Pitfalls

Basics of Parallelization

▪ Certain patterns of program execution lend them

selves to specific parallelization solutions.

▪ Recognizing these patterns in your code will help

you choose which parallelization approach to

use.

▪ Here’s a few examples. There are lots more than

we have time for here!

Embarrassingly Parallel

▪ Take a list of numbers:

▪ And calculate its sum:

▪ This can easily be computed in

parallel. Break into 2 chunks,

sum them, and sum the chunks:
▪ Or break it down into even smaller

computations.

1 2 3 4 5 6 7 8 9 10

1+2+3+4+5+6+7+8+9+10

1+2+3+4+5 6+7+8+9+10+

Embarassingly Parallel

▪ Completely independent steps.

▪ Ex.: multiple runs of a simulation, processing multiple data files with the

same script, calling 1 function over every element of an array.

Many
files

python
script.py

Output
files

Input file
1

Input file
2

Input file
3

python
script.py

Output
file 1

python
script.py

python
script.py

Output
file 1

Output
file 1

Run

simultaneously

on separate

cores

Embarassingly Parallel

▪ Each iteration of a for loop might be completely independent of each

other.

x = [1,2,3,4,5];

y = zeros(5) ;

% Each loop iteration has no dependence

% on any other loop iteration.

for i = x

y(i) = some_func(x(i));

Serial Matlab code

x = [1,2,3,4,5];

% Launch 5 Matlab processes to

% run in parallel

parpool(5) ;

parfor i = x

y(i) = some_func(x(i));

Parallel Matlab code

Divide & Conquer

▪ A problem can be broken into sub-problems that are solved

independently.

Problem

Sub-problem 1 Sub-problem 2

Sub-problem 3 Sub-problem 3

Solution

split

split

Merge/reduce

Example: the famous

MapReduce algorithm.

Sub-problems 1

and 2 can be

executed in

parallel.

Or both 3’s with 2.

https://en.wikipedia.org/wiki/MapReduce

Pipeline

▪ Steps in a pipeline must run sequentially.

▪ These stages could be internal functions in a program.

Each stage executes

in parallel .

Input
data stage 1

stage 2

stage 3

stage 4

output
data

stage 1

stage 2

stage 3

stage 4

Time

3 chunks of input data

Geometric

▪ The problem can be broken up into predictable patterns.

▪ Frequently used in image processing and physical simulations.

▪ Different parts of a program may use different parallel strategies during

execution.
▪ Or they can be combined: a pipeline step might involve an embarrassingly parallel

computation.

https://en.wikipedia.org/wiki/OpenMP

Data Structure Driven

▪ The way your data is organized can

influence the choice of algorithms.

▪ For common data structures do a

literature search for parallel

algorithms – you may get lucky.

▪ For example: sum the elements of

this binary tree in parallel.

Outline

▪ Parallel Algorithm

▪ Hardware

▪ Parallel Implementations

▪ Processes and Threads

▪ Libraries

▪ Your code

▪ Pitfalls

Monitoring on

Linux with the

top tool

▪ On the SCC*, use top

▪ To see your processes only: top -u username

▪ To exit top: press ‘q’

▪ 100% of CPU means 1 core is 100% occupied.

▪ 200% means 2 cores are used, etc.

▪ The RES column is the amount of RAM actively in use by the process.

▪ VIRT is the virtual memory – essentially the maximum amount of RAM the process might

request.

* Alternate tool: htop

Process Monitoring - Windows

▪ Windows Task Manager
▪ Right-click on task bar

▪ 100% of CPU means all

cores are 100% utilized.
▪ On a 4-core computer, if your

program is running at 25% CPU

then it’s fully using 1 core.

Windows 11

Process Monitoring - Windows

click

Right-click on the

column headers →

“Select Columns” →

choose Threads

click

Process Monitoring – Mac OSX

▪ Use Spotlight (⌘ spacebar) to run the Activity Monitor

▪ 100% of CPU means 1

core is 100% occupied.

▪ 200% means 2 cores are

used, etc.

Process

▪ A program running on a

computer.

▪ Processes can start other

processes.

▪ Properties:
▪ A private (non-shared) memory space

▪ A process ID

▪ Can exchange data with other

processes via files, pipes, network

connections, system shared memory,

etc.

https://en.wikipedia.org/wiki/Process_(computing)

▪ The operating system schedules the

process so that it shares computational

time with other processes.

Multiple Python processes running

Multiple processes

https://en.wikipedia.org/wiki/Process_(computing)

Threads

▪ Python running threads on 22 cores.
▪ Note there is 1 Python process listed

▪ 2186% means ~22 cores are busy.

https://en.wikipedia.org/wiki/Light-weight_process

▪ A part of a process that can be

scheduled to run independently of the

rest of the process.

▪ Are created, run, and destroyed by a

process.

▪ Properties:
▪ Shares memory with other threads and the

original process.

▪ Does not have a separate process ID.

▪ Can exchange data with other threads or with

other processes.

One process

8 threads

https://en.wikipedia.org/wiki/Light-weight_process

Parallelize with Processes or Threads? Or both?

▪ Process Parallelism:
▪ Can have a slow startup

▪ Milliseconds to seconds to launch processes.

▪ Data is usually be copied between processes.
▪ Memory usage can be higher

▪ Simpler to implement.
▪ A serial function run in parallel via processes can often

be used with few changes.

▪ Can potentially execute on multiple computers

and communicate via a network.

▪ Avoids issues with libraries that are not

compatible with threads.

▪ Thread-based:

▪ Threads start up very fast (~dozen s)

▪ All the program memory is accessible by all threads.

▪ Avoids the need to copy memory.

▪ Lower system memory usage

▪ Fast communication between threads by shared

memory.

▪ More complicated parallelization patterns can be

implemented with less work.

You can add parallelism to your program through

changing your source code or by calling libraries that

implement parallel algorithms.

Outline

▪ Parallel Examples

▪ Hardware

▪ Parallel Strategies

▪ Processes and threads

▪ Libraries

▪ Parallelizing your code

▪ Parallelization pitfalls

Types of Parallelization

▪ On the SCC: queue parallelization.
▪ You have N files to process. Submit N jobs.

▪ Or, one job array that launches N jobs. This is an example of weak scaling.

▪ This often requires little to no changes to your code.

▪ Parallel Libraries
▪ Use a library that internally implements some kind of parallelization.

▪ Multiple Processes
▪ Your program launches several copies of itself (or other programs) to solve the computational

problem.

▪ On one computer or many.

▪ Multiple Threads
▪ Your program creates threads, which are parts of the same program that can execute

independently of each other.

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array

Common Parallel Libraries

Language / Library Parallelization Notes

Python multiprocessing

joblib

numba

Processes

Processes

Threads

Standard language library

popular library

Python function → native code compiler

Matlab parpool

Implicit parallelism

Processes

Threads

Standard language library.

Some operations will automatically multi-

thread.

R parallel

foreach / doParallel

future

Threads

Processes

Both

Standard language libaries.

C++ STL parallel

TBB

OpenMP

Threads

Threads

Threads

C++17 standard and newer

The Intel Thread Building Blocks library

Standard threading library, comes with the

compiler

Java Thread class

ForkJoinPool

Threads

Threads

Standard Java libraries.

Common Parallel Libraries

Library Parallelization Notes

BLAS & LAPACK

(SCC: blis or openblas modules,

MKL library in the intel module)

Threads Linear algebra. Widely used, for example by

R, Python, and Matlab.

FFTW Threads Fast Fourier Transforms.

OpenCV Threads Image processing.

PyTorch Threads (CPU) or GPU Machine learning.

PETSc Processes and threads Partial differential equation solver, multi-

compute node.

MPI Processes Low-level library for multi-node communication.

OpenMP Threads Low-level library (C/C++/Fortran) for multi-

threading.

Example: BLAS

▪ The Basic Linear Algebra Subprograms library

provides a variety of functions for linear

algebra type calculations.
▪ This underlies a staggering number of algorithms and

computations in every area of computing.

▪ Are you computing eigenvalues, doing singular value

decomposition, solving least-squares, computing covariant

matrices?

▪ High performance threaded BLAS libraries

continue to be an active area of computer

science research.
▪ SCC benchmark.

Enable OpenMP Threading Libraries on the SCC

▪ The most common multi-threading library in SCC

modules is OpenMP.
▪ Including the various BLAS libraries.

▪ The number of threads that will be used by your

program can be set using the environment

variable OMP_NUM_THREADS

▪ The SCC sets OMP_NUM_THREADS=1 by

default for all jobs.

#$/bin/bash -l

Request 8 cores for this job

The queue will set the variable

NSLOTS to 8

#$ -pe omp 8

We know a priori that this multithreads

with OpenMP

module load abc/1.0

Allow for OpenMP threading.

export OMP_NUM_THREADS=$NSLOTS

Using NSLOTS means we will never ask

for more threads than assigned cores.

Now run the program...is it faster?

abc ...etc...

NEVER try to use more threads than

$NSLOTS…the process reaper will kill

your job.

Don’t use more OpenMP threads than you

have cores – performance will drop

drastically.

Enable OpenMP on non-SCC computers

▪ Environment variables can be set in various ways on different operating

systems. Here is a guide for Windows, Linux, and Mac OSX.

▪ The OpenMP library looks for OMP_NUM_THREADS regardless of the

operating system.

▪ Mac users:
▪ The BLAS library used by R, Python, etc. is likely to be the Apple Accelerate library.

▪ Try setting the variable VECLIB_MAXIMUM_THREADS along with OMP_NUM_THREADS.

https://www.schrodinger.com/kb/1842

Know your software

▪ OpenMP is hardly the last word in multithreading.

▪ Different software may have different mechanisms for enabling

threaded or multiprocess calculations such as configuration options

or command line flags.

▪ Read the documentation!

Strong scaling: Speedup Depends on the Problem

▪ For small matrix sizes, using any number

of threads >1 is slower.

▪ Thread coordination takes longer than the

parallel speedup.

▪ Larger matrices have diminishing returns

for higher numbers of threads.

▪ For any given code you’ll likely find a

range above which more

threads/processes doesn’t help.

▪ You have to test!

1 -

Intel Xeon CPU E5-2650 v2 @ 2.60GHz. 16 physical cores (scc-pi2)

AMD EPYC 7702 CPU @2 GHz. 64 physical cores, 1 socket

▪ Running on a 64-core system the

computation actually gets slower with too

many threads.

▪ It may be that some parts of your code

benefit from more threads than others –

try to pick a sensible number.

▪ The ideal thread number may change if

you change the CPU manufacturer, CPU

model, BLAS library, and so on.

▪ Test your code!

Outline

▪ Parallel Examples

▪ Hardware

▪ Parallel Strategies

▪ Processes and threads

▪ Libraries

▪ Parallelizing your code

▪ Parallelization pitfalls

Parallelizing your own code

▪ Here’s a chart to help you bring all this

together in the context of your code.

▪ Is it your own program (you have the source

code) or are you using someone else’s

program?

▪ Always: read the documentation.

.

Code Profiling

▪ For programs you’ve written, do you know where the program spends its

time?

▪ Is it CPU, I/O, or memory bound?
▪ And this can vary throughout a program’s execution.

▪ Profile before you parallelize (or optimize) – we’re all bad at guessing

what’s fast or slow in our software.
▪ Using Rstudio for R code: profvis

▪ Matlab: use the built-in profiler

▪ Python: use the available libraries

▪ C/C++/Fortran: try the Intel Advisor and/or Vtune profilers (in the intel/2021.1 module)

https://support.rstudio.com/hc/en-us/articles/218221837-Profiling-R-code-with-the-RStudio-IDE
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://docs.python.org/3/library/profile.html

Take the path of least resistance

▪ Parallel coding takes practice and the development of expertise.

▪ If your code is numerically intensive (eigenvalues, correlations, SVD,

FFT’s etc.) your program is likely to be using a BLAS (or FFT) library

which multithreads itself.
▪ Try export OMP_NUM_THREADS=4

▪ If that gives you a good speedup in your code, declare victory and focus on other parts of your

code or problem.

▪ For other people’s code, check for options that enable multiple threads or

parallelization.

Use the source

▪ If you have the source code you have much
more control

▪ Look for language options for
implicit/automatic multithreading:

▪ Matlab: maxNumCompThreads(N)

▪ R (for Rcpp code): setNumThreads(N)

▪ Mathematica: LaunchKernels[N]

▪ Incorporate parallel libraries

▪ Ex. Python: switch from Pandas
DataFrames to Dask DataFrames or
Polars

https://docs.dask.org/en/stable/dataframe.html
https://www.pola.rs/

Modify your code

▪ Make use of parallel capabilities built into the language when you can:
▪ Matlab: parfor

▪ R: parallel:mclappy, foreach, doParallel

▪ Python: multiprocessing.Pool, joblib

▪ C++ (C++17 standard and up) parallel STL algorithms

▪ More extensive or elaborate parallelization might require using an

additional programming language with libraries like OpenMP
▪ R → Rcpp (C++)

▪ Python → use Numba, or Cython, or call out to C, C++, or Fortran (via f2py)

▪ Matlab → C or C++ using the mex tool

https://numba.pydata.org/numba-doc/latest/user/parallel.html
https://cython.readthedocs.io/en/latest/src/userguide/parallelism.html
https://numpy.org/doc/stable/f2py/
https://www.mathworks.com/help/matlab/ref/mex.html

Outline

▪ Parallel Examples

▪ Hardware

▪ Parallel Strategies

▪ Processes and threads

▪ Libraries

▪ Parallelizing your code

▪ Parallelization pitfalls

Watch Your Core Usage

▪ Example: a Python program uses the multiprocessing library to launch 3 Python processes.

▪ Each process calls a function that eventually calls out to the openBLAS library using numpy

▪ What’s the most number of cores that get used at the same time?

▪ 3 processes * 4 threads per process = 12

Python

openBLAS using
4 threads

Python

openBLAS using
4 threads

Python

openBLAS using
4 threads

OMP_NUM_THREADS=4

Parallelization Difficulties

▪ Some code cannot be parallelized – it

must be computed in order.
▪ Ex.: random number generation can be tricky

▪ Some loops or function calls can have

dependencies on other loop iterations

that make it impossible, difficult, or

inefficient to parallelize.

▪ Choose your battles wisely

▪ Use profiling to identify code

that is worth improving.

Parallelization Difficulties

▪ Random number generation is not straightforward. RNG algorithms cannot be called

from multiple threads.

▪ Do not improvise this, read documentation!

▪ Computing RNG’s in parallel requires different random seeds for each worker*.

▪ Suggestion: seed your RNG in the main process. When spawning workers, provide each a different

random number to use as a seed for a private RNG for that worker.

Notes for Python, Matlab, and R.

* worker: process or thread

https://numpy.org/doc/stable/reference/random/parallel.html
https://www.mathworks.com/help/parallel-computing/repeat-random-numbers-in-parfor-loops.html
https://cran.r-project.org/web/packages/dqrng/vignettes/parallel.html

Parallelization Difficulties

▪ Be careful about the amount of I/O your

workers are performing.

▪ Disks, networks, etc. have bandwidth

limits.

▪ Excess workers can overload resources,

turning the problem from CPU-bound to

I/O bound.

▪ Multiple process parallelization

can consume large amounts of

memory.

How Many Workers*?

▪ I/O-bound programs may run

hundreds or thousands of workers
▪ These spend a lot of time waiting for data

from the network, the disk, the user, etc.

▪ CPU-bound programs should run

one worker per physical core.

▪ Memory-bound programs often use

fewer workers than cores.

Apache web server ….

Hundreds of copies of itself handle incoming web traffic

LAMMPS
molecular dynamics code

4 cores – 4 workers

* worker: process or thread

What happens with too many workers?

▪ For CPU-bound problems, use no more than 1 worker per physical core.

▪ More than 1 results in workers competing for access to the cores and

memory bandwidth.

▪ Performance will suffer significantly with excess workers.

▪ Watch for mixing multiple processes and multithreading (like MPI with

OpenMP): each process can end up launching many threads, overloading

the cores.

Appendix

▪ Some extra slides

The Message Passing Interface (MPI)

▪ With the right software tools processes can be run on multiple computers

simultaneously and communicate with each other across a network.

▪ The MPI library is the most successful system for this in high performance

computing.
▪ On the SCC we standardized on the OpenMPI implementation: module avail openmpi

▪ Used on the world’s largest clusters with thousands of cores over

hundreds of compute nodes for single programs.

https://www.open-mpi.org/

MPI

▪ Since MPI uses separate

processes, the programmer has

to decide how and when data is

shared between them.

▪ MPI provides routines for

communication, parallel file I/O,

gathering and reducing data from

processes, and many more.

Using MPI in your software

▪ OpenMPI libraries are typically available for C, C++, Fortran, and Java.

▪ Wrappers libraries for MPI are readily available. These will typically work

with whichever MPI implementation is available
▪ OpenMPI, MVAPICH, Intel MPI, etc.

▪ MPI programming is an advanced programming skill. RCS is happy to

help – email us!

Language Library

Python mpi4py

R Rmpi

Julia MPI.jl

C# MPI.NET

mpirun

▪ MPI programs have a special program to

launch them, mpirun

▪ OpenMPI’s mpirun has many options that

control how MPI processes are started

and where they run.

▪ Try module help modulename on the SCC

for MPI-based modules

▪ On the SCC the configuration of compute

nodes for mpirun is handled by the

queue.

3 compute nodes, 4 cores each.

mpirun -np 12 my_mpi_prog

1 MPI process per compute node will run.

MPI process

mpirun -np 3 my_mpi_prog

3 MPI processes will run…all on node 0.

mpirun -np 3 --map-by ppr:1:node my_mpi_prog

3 MPI processes will run, one per node

export OMP_NUM_THREADS=4

mpirun -np 3 --map-by ppr:1:node my_mpi_prog

3 MPI processes will run, one per node, with 4 threads

MPI process with

1 OpenMP thread

OpenMP thread

mpirun process assignment

▪ OpenMPI’s mpirun can spread processes

across the nodes in multiple ways
▪ Recommended on the SCC:

▪ --map-by ppr:N:resource Launches N

processes per resource

▪ Resource: socket, node, numa, etc.

▪ You can also control how processes can be

migrated between sockets, memory controllers,

etc, along with any threads they launch.

▪ Ask RCS for assistance.

3 compute nodes, 4 cores each.

mpirun -np 6 --map-by ppr:2:node my_mpi_prog

MPI ranks

0 2 41 3 5

mpirun

▪ To experiment with various OpenMPI mpirun
options use the xthi module

▪ This is a utility that prints out MPI process and

OpenMP threads and where they were

launched using mpirun.

get yourself an MPI session

qrsh -pe mpi_16_tasks_per_node 32

load xthi

module load openmpi/3.1.4

module load xthi/1.0

module help xthi

man mpirun

export OMP_NUM_THREADS=4

mpirun --map-by ppr:1:socket xthi

SCC MPI Nodes

▪ Request MPI-specific nodes on the

SCC with the qsub option:

▪ -pe mpi_16_tasks_per_node N

▪ Where N is a multiple of 16

▪ N=48 → 4 16-core nodes

▪ NSLOTS → 48

▪ -pe mpi_28_tasks_per_node M

▪ Where M is a multiple of 28

▪ The only way to use multiple compute

nodes for a job on the SCC is to use

the MPI queues.

Network Type Bandwidth (Gbit/sec) Latency (s)

10gig Ethernet 10 12.5

QDR Infiniband 40 1.3

FDR Infiniband 56 0.7

EDR Infiniband 100 0.5

HDR Infiniband 200 0.6

▪ These jobs run on dedicated compute nodes

connected with an Infiniband network.

▪ See above for SCC versions

▪ Latency is how quickly a data transfer can be

initiated. For MPI computations this is often the

limit, not the bandwidth.

https://en.wikipedia.org/wiki/InfiniBand

	Slide 1: Introduction to Parallel Programming Concepts
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Limits (“bounds”) on Program Speed
	Slide 5: Why Parallelize?
	Slide 6: Amdahl’s Law
	Slide 7: Strong and Weak Scaling
	Slide 8: Some things can’t be done in parallel.
	Slide 9: Example 1: Daily Average Temperatures
	Slide 10: Example 1: Daily Average Temperatures
	Slide 11: Example 2: Gaussian Image Blurring
	Slide 12: Example 2: Gaussian Image Blurring
	Slide 13: Example 3. Physical Modeling
	Slide 14: Example 3. Physical Modeling
	Slide 15: Example 4: k-mer counting
	Slide 16: Example 4: k-mer counting
	Slide 17: Example 4: k-mer counting
	Slide 18: The basics of the Work-Depth Model
	Slide 19: Work-Depth Model
	Slide 20: Work-Depth Model
	Slide 21: Work-Depth Model now with more parallelism!
	Slide 22: Outline
	Slide 23: Hardware for Parallel Computation
	Slide 24: CPUs and cores
	Slide 25: Modern configurations
	Slide 26: CPUs and cores
	Slide 27: GPU Hardware
	Slide 28: The Illusion of Parallelism
	Slide 29: Logical Cores aka “hyperthreading” or “hardware threads”
	Slide 30: Logical Cores (by analogy)
	Slide 31
	Slide 32: Logical cores in action
	Slide 33: Count Your Cores
	Slide 34: New CPUs: Performance and Efficiency Cores
	Slide 35: Logical Cores and Your Program
	Slide 36: SCC cores
	Slide 37: Outline
	Slide 38: Basics of Parallelization
	Slide 39: Embarrassingly Parallel
	Slide 40: Embarassingly Parallel
	Slide 41: Embarassingly Parallel
	Slide 42: Divide & Conquer
	Slide 43: Pipeline
	Slide 44: Geometric
	Slide 45
	Slide 46: Data Structure Driven
	Slide 47: Outline
	Slide 48: Monitoring on Linux with the top tool
	Slide 49: Process Monitoring - Windows
	Slide 50: Process Monitoring - Windows
	Slide 51: Process Monitoring – Mac OSX
	Slide 52: Process
	Slide 53: Threads
	Slide 54: Parallelize with Processes or Threads? Or both?
	Slide 55: Outline
	Slide 56: Types of Parallelization
	Slide 57: Common Parallel Libraries
	Slide 58: Common Parallel Libraries
	Slide 59: Example: BLAS
	Slide 60: Enable OpenMP Threading Libraries on the SCC
	Slide 61: Enable OpenMP on non-SCC computers
	Slide 62: Know your software
	Slide 63: Strong scaling: Speedup Depends on the Problem
	Slide 64: AMD EPYC 7702 CPU @2 GHz. 64 physical cores, 1 socket
	Slide 65: Outline
	Slide 66: Parallelizing your own code
	Slide 67: Code Profiling
	Slide 68: Take the path of least resistance
	Slide 69: Use the source
	Slide 70: Modify your code
	Slide 71: Outline
	Slide 72: Watch Your Core Usage
	Slide 73: Parallelization Difficulties
	Slide 74: Parallelization Difficulties
	Slide 75: Parallelization Difficulties
	Slide 76: How Many Workers*?
	Slide 77: What happens with too many workers?
	Slide 78: Appendix
	Slide 79: The Message Passing Interface (MPI)
	Slide 80: MPI
	Slide 81: Using MPI in your software
	Slide 82: mpirun
	Slide 83: mpirun process assignment
	Slide 84: mpirun
	Slide 85: SCC MPI Nodes

