
Laplace Exercise

Shaohao Chen

Research Computing Services

Information Services and Technology

Boston University

Laplace solver (1)

• Discretize the Laplacian using first-order differential method and obtain the solution as following,

• The solution on one grid only depends on the four neighbor grids:

• Two-dimensional Laplace equation:

• Jacobi iterative algorithm:

1. Give a trial solution A based on a provided initial condition.

2. Calculate a new solution, that is A_new(i,j), using the old values of the four
neighbor points that are stored in A.

3. Update the solution: A=A_new.

4. Iterate steps 2 and 3 until converged, i.e. max(|A_new(i,j)-A(i,j)|)<tolerance.

5. Finally the converged solution is stored in A.

Laplace solver (2)

• Use iterative algorithm to obtain a converged solution.

Serial code in C (kernel)

while (dA > tolerance && iteration <= max_iterations) { // do until error is minimal or until max steps

for(i = 1; i <= ROWS; i++) // main calculation: average my four neighbors

for(j = 1; j <= COLUMNS; j++) {

A_new[i][j] = 0.25 * (A[i+1][j] + A[i-1][j] +A[i][j+1] + A[i][j-1]);

}

dA = 0.0; // reset largest change

for(i = 1; i <= ROWS; i++)

for(j = 1; j <= COLUMNS; j++){

dA = fmax(fabs(A_new[i][j]-A[i][j]), dA); // find the latest change

A[i][j] = A_new[i][j]; // copy grid to old grid for next iteration

}

iteration++;

}

Serial code in Fortran (kernel)

do while (dA > tolerance .and. iteration <= max_iterations) ! do until error is minimal or until max steps

do j=1,columns ! main calculation: average my four neighbors

do i=1,rows

A_new(i,j)=0.25*(A(i+1,j)+A(i-1,j)+A(i,j+1)+A(i,j-1))

enddo

enddo

dA=0.0 ! reset largest change

do j=1,columns

do i=1,rows

dA = max(abs(A_new(i,j) - A(i,j)), dA) ! find the latest change

A(i,j) = A_new(i,j) ! copy grid to old grid for next iteration

enddo

enddo

iteration = iteration+1

enddo

Analysis for parallelism:

1. Find the “hot spots”, the most time-consuming parts of the code.

2. Decompose the grids into sub-grids. Each process owns one sub-grid.

3. Pass necessary data between processes. (e.g. use MPI_Send and MPI_Recv). Be
careful to avoid dead locks.

4. Pass “shared” data between the root process and all other process (e.g. use
MPI_Bcast and MPI_Reduce).

Parallelize with MPI

• 1D Decomposition:

Divide columns in Fortran or divide rows in C.

Domain Decomposition (1)

 Blue zone: The real grids.

 White zone: An additional layer for boundary condition.

 Yellow zone: The data on these grids need to be sent to neighbor process(es).

 Red zone: An additional layer to receive the data from neighbor process(es). Also called “ghost zone”.

Ghost Zone (1)

123

345

• 2D Decomposition:

Divide both rows and columns

Domain Decomposition (2)

 Send and receive row-type and column-type data.

Ghost Zone (2)

