
Introduction to C++: Part 4

Existing SCC Account

1. Open a web browser

2. Navigate to http://scc-ondemand.bu.edu

3. Log in with your BU Kerberos Credentials

Temporary Tutorial Account

1. Open a web browser

2. Navigate to http://scc-ondemand-tutorial.bu.edu

3. Log in with Tutorial Account

http://scc-ondemand.bu.edu/
http://scc-ondemand-tutorial.bu.edu/

Click on Interactive Apps/Desktop

3

eclipse/2019-06

gcc/8.3.0

click

When your desktop is ready click Connect to Desktop

▪ Enter this command to create a

directory in your home folder and to

copy in tutorial files:

/net/scc2/scratch/intro_to_cpp4.sh

Download Part4.zip:
http://rcs.bu.edu/examples/cpp/tutorial/

or

C++ Libraries

▪ There are a LOT of libraries available for

C++ code.

▪ Sourceforge alone has > 9400

▪ Before jumping into writing your code,

consider what you need and see if there

are libraries available.

▪ Many libraries contain code

developed by professionals or

experts in a particular field.

▪ Consider what you are trying to

accomplish in your research:

▪ A) accomplishments in your field or

▪ B) C++ programming?

https://sourceforge.net/directory/language:cpp/?q=library

C++ Compilers on the SCC

▪ There are 4 families of compilers on the SCC for C++.
▪ To see versions use the module avail command, e.g. module avail gnu

▪ They have their strengths and weaknesses.

▪ For info on how to choose compiler optimizations for the SCC see the RCS website:
http://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/compiler-optimizations/

Module name Vendor Compiler Versions

gnu GNU g++ 4.8.5 - 11.2.0

intel Intel icpc 2016 - 2021.1

pgi Portland

Group /

Nvidia

pgc++ 16.5 - 19.4

llvm LLVM clang++ 3.9 .1- 12.0.1

http://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/compiler-optimizations/

C++ Standard by Compiler

▪ Support for C++ standards in g++

▪ Intel icpc: On Linux, g++ header files are used by the Intel icpc compiler, so icpc will support

the standards used by the available g++.

▪ Support in Microsoft Visual C++ compiler

▪ Support in clang++

▪ (as used on Mac OSX

https://gcc.gnu.org/projects/cxx-status.html
https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=msvc-170
https://clang.llvm.org/cxx_status.html

Multithreading

▪ OpenMP
▪ Open MP is a standard approach to writing multithreaded code to exploit multiple CPU cores

with your program.

▪ Fully supported in C++

▪ Intel Thread Building Blocks
▪ C++ specific library

▪ Available on the SCC from Intel and is also open source. (in the intel modules)

▪ Much more flexible and much more C++-ish than OpenMP

▪ Offers high performance memory allocators for multithreaded code

▪ Includes concurrent data types (vectors, etc.) that can automatically be shared amongst

threads with no added effort for the programmer to control access to them.

▪ Data Parallel C++
▪ Dialect of C++ with extensive multi-threading built in.

https://en.wikipedia.org/wiki/OpenMP
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.4r7x3d
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.4r8gtv

Math and Linear Algebra
▪ Eigen

▪ http://eigen.tuxfamily.org/index.php?title=Main_Page

▪ “Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.”

▪ Armadillo
▪ http://arma.sourceforge.net/

▪ “Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance

between speed and ease of use. Provides high-level syntax (API) deliberately similar to Matlab.”

▪ OpenCV
▪ A computer vision and image processing library, with excellent high-performance support for linear algebra, many

algorithms, and GPU acceleration.

▪ Ceres
▪ non-linear optimization

▪ LAPACK++
▪ C++ wrapper for the BLAS and LAPACK libraries

▪ dlib
▪ Machine learning and data analysis

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://arma.sourceforge.net/
https://opencv.org/
http://ceres-solver.org/
https://en.wikipedia.org/wiki/LAPACK%2B%2B
https://en.wikipedia.org/wiki/Dlib

Other useful libraries

▪ Parsers

▪ CLI11 - https://github.com/CLIUtils/CLI11

▪ Command line arguments. Header-only library, C++11 standard required

▪ json - https://github.com/nlohmann/json

▪ JSON format reading/writing. Header-only library.

▪ Physical units (enforced at compile time!):

▪ mp-units - https://github.com/mpusz/units

▪ In consideration to be included in the C++23/26 standard.

▪ Needs C++20 to compile and use

▪ units - https://github.com/nholthaus/units

▪ Header-only library, requires C++14

The doomed Mars Observer spacecraft.

▪ Random Numbers

▪ C++11 standard RNGs

▪ PCG library

▪ Faster number generation,

works with C++11 RNG

containers

https://github.com/CLIUtils/CLI11
https://github.com/nlohmann/json
https://github.com/mpusz/units
https://github.com/nholthaus/units
https://en.wikipedia.org/wiki/Mars_Observer
https://cplusplus.com/reference/random/
https://www.pcg-random.org/using-pcg-cpp.html

Using subclasses
▪ A function that takes a superclass

argument can also be called with

a subclass as the argument.

▪ The reverse is not true – a

function expecting a subclass

argument cannot accept its

superclass.

▪ Copy the code to the right and

add it to your main.cpp file.

void PrintArea(Rectangle &rT) {

cout << rT.Area() << endl ;

}

int main() {

Rectangle rT(1.0,2.0) ;

Square sQ(3.0) ;

PrintArea(rT) ;

PrintArea(sQ) ;

}

The PrintArea function

can accept the Square

object sQ because

Square is a subclass of

Rectangle.

Overriding Methods
▪ Sometimes a subclass needs to have the

same interface to a method as a

superclass but with different functionality.

▪ This is achieved by overriding a method.

▪ Overriding a method is simple: just re-

implement the method with the same

name and arguments in the subclass.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

Overriding Methods

▪ Seems simple, right?

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

How about in a function call…

▪ Using a single function to operate

on different types is

polymorphism.

▪ Given the class definitions, what

is happening in this function call?

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Super sP ;

Func(sP) ; // Prints 1

Sub sB ;

Func(sB) ; // Hey!! Prints 1!!

“C++ is an insult to the human brain”

– Niklaus Wirth (designer of Pascal)

Type casting

▪ The Func function passes the argument as a reference (Super &sP).

▪ What’s happening here is dynamic type casting, the process of converting from

one type to another at runtime.

▪ Same mechanism as the dynamic_cast<type>() function

▪ The incoming object is treated as though it were a superclass object in

the function.

▪ When methods are overridden and called there are two points where

the proper version of the method can be identified: either at compile

time or at runtime.

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Virtual methods
▪ When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

▪ The type check will then result in the

expected version of the method being

called.

▪ When overriding a virtual method in a

subclass, it’s a good idea to label the

method as virtual in the subclass as well.

▪ …just in case this gets subclassed again!

class SuperVirtual

{

public:

virtual void PrintNum()

{

cout << 1 << endl ;

}

} ;

class SubVirtual : public SuperVirtual

{

public:

// Override

virtual void PrintNum()

{

cout << 2 << endl ;

}

} ;

void Func(SuperVirtual &sP)

{

sP.PrintNum() ;

}

SuperVirtual sP ;

Func(sP) ; // Prints 1

SubVirtual sB ;

Func(sB) ; // Prints 2!!

Early (static) vs. Late (dynamic) binding

▪ Leaving out the virtual keyword on a

method that is overridden results in the

compiler deciding at compile time which

version (subclass or superclass) of the

method to call.

▪ This is called early or static binding.

▪ At compile time, a function that takes a

superclass argument will only call the

non-virtual superclass method under

early binding.

▪ Making a method virtual adds code

behind the scenes (that you, the

programmer, never interact with directly)

▪ Lookups in a hidden table, called the

vtable, are done to figure out what version

of the virtual method should be run.

▪ This is called late or dynamic binding.

▪ There is a small performance penalty for

late binding due to the vtable lookup.

▪ This only applies when an object is

referred to by a reference or pointer.

Behind the scenes – vptr and vtable

▪ C++ classes have a hidden pointer (vptr)

generated that points to a table of virtual

methods associated with a class (vtable).

▪ When a virtual class method (base class

or its subclasses) is called by reference (

or pointer) when the program is running

the following happens:

▪ The object’s class vptr is followed to its class

vtable

▪ The virtual method is looked up in the vtable

and is then called.

▪ One vptr and one vtable per class so minimal

memory overhead

▪ If a method override is non-virtual it won’t be in

the vtable and it is selected at compile time.

Func(SuperVirtual &sP)

sP is a reference to a…

SuperVirtual SubVirtual

SuperVirtual’s

vptr

SubVirtual’s

vptr

Vtable

& SuperVirtual::PrintNum()

Vtable

& SubVirtual::PrintNum()

Let’s run this through the debugger

▪ Open the project Virtual_Method_Calls.

▪ Everything here is implemented in one big main.cpp

▪ Place a breakpoint at the first line in main() and in the two

implementations of Func()

When to make methods virtual

▪ If a method will be (or might be)

overridden in a subclass, make it virtual

▪ There is a minuscule performance

penalty. Will that even matter to you?
▪ i.e. Have you profiled and tested your code to

show that virtual method calls are a performance

issue?

▪ When is this true?
▪ Almost always! Who knows how your code will

be used in the future?

▪ Constructors are never virtual in C++.

▪ Destructors in a base class should

always be virtual.

▪ Also – if any method in a class is virtual,

make the destructor virtual

▪ These are important when dealing with

objects via reference and it avoids some

subtleties when manually allocating

memory.

Why all this complexity?

▪ Late binding allows for code libraries to be updated for new functionality. As methods are identified

at runtime the executable does not need to be updated.

▪ This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation

code.

▪ Greater flexibility when dealing with multiple subclasses of a superclass.

▪ Most of the time this is the behavior you are looking for when building class hierarchies.

void FuncLate(SuperVirtual sP)

{

sP.PrintNum() ;

}

void FuncEarly(SuperVirtual &sP)

{

sP.PrintNum() ;

}

▪ Called by reference – late binding

to PrintNum()
▪ Called by value – early binding to

PrintNum even though it’s virtual!

▪ Remember the Deadly Diamond of

Death? Let’s explain.

▪ Look at the class hierarchy on the right.

▪ Square and Circle inherit from Shape

▪ Squircle inherits from both Square and Circle

▪ Syntax:

class Squircle : public Square, Circle

▪ The Shape class implements an empty

print_info() method. The Square and

Circle classes override it. Squircle does

not.

▪ Under late binding, which version of

print_info() is accessed from Squircle?

Square. info() or Circle. info()?

Shape

virtual float print_info(){}

Square

virtual float

print_info() {…}

Circle

virtual float

print_info()

{…}

Squircle

Squircle is not a made-up word.

https://en.wikipedia.org/wiki/Squircle

Interfaces

▪ Interfaces are a way to have your

classes share method names without

them sharing actual code.

▪ …and hopefully methods with the same name

are implemented to do the same thing, that’s

up to you!

▪ Gives much of the benefit of multiple

inheritance without the complexity and

pitfalls

Shape

Square Circle

▪ Example: for debugging you want each class

to have a Log() method that writes some info

to a file.

▪ Implement with an interface.

Log

Interfaces

▪ An interface class in C++ is called a pure virtual class.

▪ It contains virtual methods only with a special syntax.

Instead of {} the function is set to 0.
▪ Any subclass must implement pure virtual methods!

▪ Modified Square.h shown.

▪ What happens when this is compiled?

▪ Once the LogInfo() is uncommented it will compile.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Log {

virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{

public:

Square(float length);

virtual ~Square();

// virtual void LogInfo() {}

protected:

private:

};

#endif // SQUARE_H

(…error…)

include/square.h:10:7: note: because the following virtual

functions are pure within 'Square':

class Square : public Rectangle, Log

^

include/square.h:7:18: note: virtual void Log::LogInfo()

virtual void LogInfo()=0 ;

Putting it all together

▪ Now let’s revisit our Shapes

project.

▪ Open the “Shapes with Circle”

project.

▪ This has a Shape base class with a

Rectangle and a Square

▪ Add a Circle class to the class

hierarchy in a sensible fashion.

Shape

Rectangle

Square

▪ Hint: Think first, code second.

Circle

???

New pure virtual Shape class

▪ Slight bit of trickery:

▪ An empty constructor is defined in shape.h

▪ No need to have an extra shape.cpp file if these

functions do nothing!

▪ Q: How much code can be in the header file?

▪ A: Most of it with some exceptions.

▪ .h files are not compiled into .o files so a

header with a lot of code gets re-compiled

every time it’s referenced in a source file.

▪ In other words, avoid putting source code in .h

files.

#ifndef SHAPE_H

#define SHAPE_H

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual float Area()=0 ;

protected:

private:

};

#endif // SHAPE_H

Give it a try

▪ Add inheritance from Shape

to the Rectangle class

▪ Add a Circle class, inheriting

from wherever you like.

▪ Implement Area() for the

Circle

▪ If you just want to see a

solution, open the project

“Shapes with Circle solved”

A Potential Solution

▪ A Circle has one dimension

(radius), like a Square.

▪ Would only need to override the

Area() method

▪ But…

▪ Would be storing the radius in the

members m_width and m_length.

This is not a very obvious to

someone else who reads your code.

▪ Maybe:

▪ Change m_width and m_length

names to m_dim_1 and m_dim_2?

▪ Just makes everything more muddled!

Shape

Rectangle

Square

Circle

A Better Solution

▪ Inherit separately from the Shape

base class

▪ Seems logical, to most people a

circle is not a specialized form of

rectangle…

▪ Add a member m_radius to store

the radius.

▪ Implement the Area() method

▪ Makes more sense!

▪ Easy to extend to add an Oval

class, etc.

Shape

Rectangle

Square

Circle

New Circle class

▪ Also inherits from Shape

▪ Adds a constant value for p

▪ Constant values can be defined right in the

header file.

▪ If you accidentally try to change the value of PI

the compiler will throw an error.

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle : public Shape

{

public:

Circle();

Circle(float radius) ;

virtual ~Circle();

virtual float Area() ;

const float PI = 3.14;

float m_radius ;

protected:

private:

};

#endif // CIRCLE_H

▪ circle.cpp

▪ Questions?

#include "circle.h"

Circle::Circle()

{

//ctor

}

Circle::~Circle()

{

//dtor

}

// Use a member initialization list.

Circle::Circle(float radius) : m_radius{radius}

{}

float Circle::Area()

{

// Quiz: what happens if this line is

// uncommented and then compiled:

//PI=3.14159 ;

return m_radius * m_radius * PI ;

}

Quiz time!

▪ What happens behind

the scenes when the

function PrintArea is

called?

▪ How about if PrintArea’s

argument was instead:

void PrintArea(Shape shape)

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

int main()

{

Square sQ(4) ;

Circle circ(3.5) ;

Rectangle rT(21,2) ;

// Print everything

PrintArea(sQ) ;

PrintArea(rT) ;

PrintArea(circ) ;

return 0;

}

Quick mention…

▪ Aside from overriding functions it

is also possible to override

operators in C++.

▪ As seen in the C++ string. The +

operator concatenates strings:

▪ It’s possible to override +,-,=,<,>,

brackets, parentheses, etc.

▪ Syntax:

▪ Recommendation:

▪ Use with great caution. This is an

easy way to write very confusing

code.

▪ A well-named function will almost

always be easier to understand than

an operator.

▪ An exceptions is the assignment

operator: operator=

string str = "ABC" ;

str = str + "DEF" ;

// str is now "ABCDEF"

MyClass operator*(const MyClass& mC) {...}

Summary

▪ C++ classes can be created in hierarchies via

inheritance, a core concept in OOP.

▪ Classes that inherit from others can make use

of the superclass’ public and protected

members and methods

▪ You write less code!

▪ Virtual methods should be used

whenever methods will be overridden in

subclasses.

▪ Avoid multiple inheritance, use interfaces

instead.

▪ Subclasses can override a superclass

method for their own purposes and can still

explicitly call the superclass method.

▪ Abstraction means hiding details when they

don’t need to be accessed by external code.
▪ Reduces the chances for bugs.

▪ While there is a lot of complexity here – in

terms of concepts, syntax, and application –

keep in mind that OOP is a highly successful

way of building programs!

Some OOP Guidelines

▪ Here are some guidelines for putting together a program using OOP to keep in mind while getting

up and running with C++.

▪ Keep your classes simple and single

purpose.

▪ Logically organize your classes to re-use

code via inheritance.

▪ Use interfaces in place of multiple

inheritance

▪ Keep your methods short

▪ Many descriptive methods that do little things

is easier to debug and understand.

▪ Follow the KISS principle:

▪ “Keep it simple stupid”

▪ “Keep it simple, silly”

▪ “Keep it short and sweet”

▪ “Make Simple Tasks Simple!” – Bjarne

Stroustroup

▪ “Make everything as simple as possible, but

not simpler” – Albert Einstein

Putting your classes together

▪ Effective use of OOP demands that the programmer think/plan/design first and code second.

▪ There is a large body of information on this topic:

▪ As this is an academic institution your code may:
▪ Live on in your lab long after you have graduated

▪ Be worked on by multiple researchers

▪ Adapted to new problems you haven’t considered

▪ Be shared with collaborators

▪ For more structured environments (ex. a team of professional programmers) there exist concepts

like SOLID:
▪ https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

▪ …and there are many others.

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Keep your classes simple

▪ Avoid “monster” classes that implement everything including the kitchen sink.

▪ Our Rectangle class just holds dimensions and calculates its area.

▪ It cannot print out its area, send email, draw to the screen, etc.

▪ Resource Allocation Is Initialization (RAII):

▪ A late 80’s concept, widely used in OOP.

▪ https://en.wikipedia.org/wiki/Resource_acquisiti

on_is_initialization

▪ ALL Resources in a class are created in the

constructor and released in the destructor.

▪ Example: opening files, allocating memory, etc.

▪ If an object is created it is ready to use.

▪ Single responsibility principle:

▪ Every class has responsibility for one piece of functionality

in the program.

▪ https://en.wikipedia.org/wiki/Single_responsibility_principle

▪ Example:

▪ An Image class holds image data and can read and write it

from disk.

▪ A second class, ImageFilter, has methods that manipulate

Image objects and return new ones.

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Single_responsibility_principle

Further learning

▪ Some tutorials:

▪ https://cplusplus.com/doc/tutori

al/

▪ https://www.w3schools.com/CP

P/default.asp

▪ Books:

▪ Effective Modern C++

▪ The C++ Programming

Language

▪ When looking for C++

tutorials and guides, look for

ones that use at least the

C++11 standard.

▪ This is “modern C++”

https://cplusplus.com/doc/tutorial/
https://www.w3schools.com/CPP/default.asp
https://www.aristeia.com/books.html
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=zg_bs_9045760011_19/134-0632342-6287262?pd_rd_i=0321563840&psc=1

