

Existing SCC Account Temporary Tutorial Account
1. Open a web browser 1. Open a web browser
2. Navigate to http://scc-ondemand.bu.edu 2. Navigate to http://scc-ondemand-tutorial.bu.edu
3. Log in with your BU Kerberos Credentials 3. Log in with Tutorial Account

E Boston University | Login
https:/fscc-ondemand-2fa.bued X -+

<« (& @ shibbu.edu)
& @ scc-ondemand-2fa....

Sign in

Login
https:/fscc-ondemand-2fa.bu.edu

BU login name Username

Password
password

m I:-IE‘ I-I I:E. |

You have asked to login to scc-ondemand.bu.edu

UNIVERSITY

http://scc-ondemand.bu.edu/
http://scc-ondemand-tutorial.bu.edu/

Click on Interactive Apps/Desktop

»
%)
Q
a
<
()
=
O
©
Lo
D
-
=

Login Nodes ~ Jobs~

Quotas ~

Files~

SCC OnDemand

Desktops

VAV,
\.\a\t\ \,\
\.\$ \\\\

soo,\)

o..

4 MATLAB

\

\ V_\\\\._
.._\\\\._\
\\ R AN V4 /

S S /))
\\\\\\\,\\\.

o

Servers

Jupyter Notebook

RStudio Server
& Shiny App Server

Access the SCC using only your web browser!

S

SCC OnDemand Documentation

« TensorBoard Server

BOST
UNIVER

Interactive Apps

Desktop
Desktops
This app will launch an interactive desktop on a compute node.
List of modules to load (space separated) .
4 MATLAB ecllpse/20 19-06
eclipse/2019-06 gcc/8.3.0 Select Modules ¢ /8 3 O
Mathematica gCC e

Working Directory

@ Qcls
Select Directory
B SAS The directory to start in. (Defaults to home directory.)
STATA .
m Initial command to run
f& Spyder xfced-terminal

VirtualGL Desktop Number of hours

Servers 3 3

= Jupyter Notebook

Number of cores

@ RStudio Server
1

& Shiny App Server
Number of gpus
4 TensorBoard Server
0

Webserver
Project

SCV b

Extra qsub options

O | would like to receive an email when the session starts

— olick

B O S TON * The Desktop session data for this session can be accessed under the

UNIVERSITY

data root directory.

Desktop (6924) €D | Running

Host: e il Delete

Created at: 2020-02-04 14:53:50 EST
Time Remaining: 2 hours and 59 minutes

Session |D: 41466d74-9acy-4f73-b596-26 cffdfE cfab

Compression Image Quality
0 (low) to 9 (high) 0 (low) to 9 (high)

Connect to Deskiop Wiew Only (Share-able Link)

When your desktop is ready click Connect to Desktop

BOSTON
UNIVERSITY

= Enter this command to create a
directory in your home folder and to
copy In tutorial files:

/net/scc2/scratch/intro to cpp4.sh

or

Download Part4.zip:
http://rcs.bu.edu/examples/cpp/tutorial/

BOSTON
UNIVERSITY

C++ Libraries

= There are a LOT of libraries available for = Many libraries contain code
C++ code. developed by professionals or
= Sourceforge alone has > 9400 experts in a particular field.

= Consider what you are trying to

= Before jumping into writing your code, accomplish in your research:
consider what you need and see if there = A) accomplishments in your field or
are libraries available. = B) C++ programming?

BOSTON
UNIVERSITY

https://sourceforge.net/directory/language:cpp/?q=library

C++ Complilers on the SCC

4.8.5-11.2.0
mtel Intel icpc 2016 - 2021.1
pgi Portland pgc++ 16.5-194
Group /
Nvidia
llvm LLVM clang++ 3.9.1-12.0.1

There are 4 families of compilers on the SCC for C++.
= To see versions use the module avail command, e.g. module avail gnu

They have their strengths and weaknesses.

For info on how to choose compiler optimizations for the SCC see the RCS website:
http://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/compiler-optimizations/

|
|
|
BOSTON
UNIVERSITY

http://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/compiler-optimizations/

C++ Standard by Compller

= Support for C++ standards in g++

= Intel icpc: On Linux, g++ header files are used by the Intel icpc compiler, so icpc will support
the standards used by the available g++.

= Support in Microsoft Visual C++ compiler

= Support in clang++
= (as used on Mac OSX

BOSTON
UNIVERSITY

https://gcc.gnu.org/projects/cxx-status.html
https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=msvc-170
https://clang.llvm.org/cxx_status.html

Multithreading

= OpenMP

= Open MP is a standard approach to writing multithreaded code to exploit multiple CPU cores
with your program.

= Fully supported in C++
* Intel Thread Building Blocks

= C++ specific library

= Available on the SCC from Intel and is also open source. (in the intel modules)

= Much more flexible and much more C++-ish than OpenMP

= QOffers high performance memory allocators for multithreaded code

= Includes concurrent data types (vectors, etc.) that can automatically be shared amongst
threads with no added effort for the programmer to control access to them.

» Data Parallel C++
= Dialect of C++ with extensive multi-threading built in.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/OpenMP
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.4r7x3d
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.4r8gtv

Math and Linear Algebra

= Eigen

= http://eigen.tuxfamily.org/index.php?titte=Main_Page

= “Eigenis a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.”
= Armadillo

= http://arma.sourceforge.net/

= “Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance
between speed and ease of use. Provides high-level syntax (API) deliberately similar to Matlab.”

= OpenCV

= A computer vision and image processing library, with excellent high-performance support for linear algebra, many
algorithms, and GPU acceleration.

= Ceres

= non-linear optimization
= LAPACK++

= C++ wrapper for the BLAS and LAPACK libraries
= dlib

= Machine learning and data analysis

BOSTON
UNIVERSITY

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://arma.sourceforge.net/
https://opencv.org/
http://ceres-solver.org/
https://en.wikipedia.org/wiki/LAPACK%2B%2B
https://en.wikipedia.org/wiki/Dlib

Other useful libraries

= Parsers
= CLI11 - https://github.com/CLIUtils/CLI11
= Command line arguments. Header-only library, C++11 standard required
= json - https://github.com/nlohmann/json
= JSON format reading/writing. Header-only library.

= S

The doomed Mars Observer spacecraft.

= Physical units (enforced at compile time!): = Random Numbers
= mp-units - https://github.com/mpusz/units = C++11 standard RNGs
= |n consideration to be included in the C++23/26 standard. _
= Needs C++20 to compile and use = PCG library _
= units - https://github.com/nholthaus/units " Faster number generation,
. . works with C++11 RNG
= Header-only library, requires C++14 containers

BOSTON
UNIVERSITY

https://github.com/CLIUtils/CLI11
https://github.com/nlohmann/json
https://github.com/mpusz/units
https://github.com/nholthaus/units
https://en.wikipedia.org/wiki/Mars_Observer
https://cplusplus.com/reference/random/
https://www.pcg-random.org/using-pcg-cpp.html

Using subclasses

= A function that takes a superclass
argument can also be called with

void PrintArea (Rectangle &rT) {

a subclass as the argument. cout << rT.Area() << endl ;
}
= The reverse is not true — a int main() {
function expecting a subclass Rectangle rT(1.0,2.0)
argument cannot accept its Square sO(3.0)
g P PrintArea (rT)
Superclass. PrintArea (sQ)
} /
= Copy the code to the right and /
add it to your main.cpp file. The PrintArea function

can accept the Square
object sQ because
Square is a subclass of

Rectangle.
BOSTON
UNIVERSITY

Overriding Methods EPPT—
: public:
= Sometimes a subclass needs to have the void PrintNum() {
same interface to a method as a cout << 1 << endl ;
superclass but with different functionality. } }
= This is achieved by overriding a method. class Sub : public Super ({
public:
// Override
= Qverriding a method is simple: just re- void PrintNum() ({
implement the method with the same } cout << 2 << endl
name and arguments in the subclass. } o
Super sP ;
sP.PrintNum() ; // Prints 1
Sub sB ;
sB.PrintNum() ; // Prints 2

e ‘
UNIVERSITY

N
Overriding Methods

class Super {
_ _ public:
= Seems simple, right? void PrintNum() {
cout << 1 << endl ;
}
b

class Sub : public Super {
public:
// Override
void PrintNum() {
cout << 2 << endl ;

}
|
Super sP ;
sP.PrintNum() ; // Prints 1
Sub sB ;
sB.PrintNum() ; // Prints 2

BOSTON
UNIVERSITY

class Super {

How about in a function call... |

void PrintNum() {
cout << 1 << endl ;

}

= Using a single function to operate b
on different types is ;iiiifub : public Super {
polymorphism. // override .
cout << 2 << endl ;
. — }
= Given the class definitions, what }

IS happening in this function call? void FuncRef (Super &sP) {

sP.PrintNum()
}

Super sP ;
“C++ is an insult to the human brain” Func(sP) ; // Prints 1

— Niklaus Wirth (designer of Pascal) Sub sB ;
Func(sB) ; // Hey!! Prints 1!!

BOSTON
UNIVERSITY

Type casting

void FuncRef (Super &sP) {
sP.PrintNum()

}

<\

= The Func function passes the argument as a reference (Super &sP).
= What's happening here is dynamic type casting, the process of converting from

one type to another at runtime.

= Same mechanism as the dynamic_cast<type>() function

= The incoming object is treated as though it were a superclass object in

the function.

= When methods are overridden and called there are two points where
the proper version of the method can be identified: either at compile

time or at runtime.

BOSTON
UNIVERSITY

Virtual methods

When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

The type check will then result in the
expected version of the method being
called.

When overriding a virtual method in a
subclass, it's a good idea to label the

method as virtual in the subclass as well.
= ...just in case this gets subclassed again!

BOSTON
UNIVERSITY

e

class SuperVirtual

{

public:
virtual void PrintNum/()
{

cout << 1 << endl ;

}

|

class SubVirtual
{
public:
// Override
virtual void PrintNum()

{

: public SuperVirtual

cout << 2 <L endl ;

}
|

void Func (SuperVirtual &sP)

{
sP.PrintNum()

}

SuperVirtual sP ;

Func (sP) // Prints 1
SubVirtual sB ;
Func (sB) // Prints 2!!

Early (static) vs. Late (dynamic) binding

= Leaving out the virtual keyword on a = Making a method virtual adds code
method that is overridden results in the behind the scenes (that you, the
compiler deciding at compile time which programmer, never interact with directly)
version (subclass or superclass) of the = Lookups in a hidden table, called the
method to call. vtable, are done to figure out what version

= This is called early or static binding. of the virtual method should be run.

= At compile time, a function that takes a

superclass argument will only call the = This is called late or dynamic binding.
non-virtual superclass method under
early binding. = There is a small performance penalty for

late binding due to the vtable lookup.

= This only applies when an object is
referred to by a reference or pointer.

BOSTON
UNIVERSITY

Behind the scenes — vptr and vtable

= C++ classes have a hidden pointer (vptr)
generated that points to a table of virtual
methods associated with a class (vtable).

= When a virtual class method (base class
or its subclasses) is called by reference (
or pointer) when the program is running
the following happens:

The object’s class vptr is followed to its class
vtable

The virtual method is looked up in the vtable
and is then called.

One vptr and one vtable per class so minimal
memory overhead

If a method override is non-virtual it won’t be in
the vtable and it is selected at compile time.

BOSTON
UNIVERSITY

Func (SuperVirtual &sP)

l

sP is a reference to a...

*

SuperVirtual SubVirtual
SuperVirtual’s SubVirtual’s
vpts

/

Vtable

& SuperVirtual::PrintNum/()

Vtable

& SubVirtual::PrintNum()

.
Let’s run this through the debugger

= Open the project Virtual Method_Calls.
= Everything here is implemented in one big main.cpp

= Place a breakpoint at the first line in main() and in the two
Implementations of Func()

When to make methods virtual

= |f a method will be (or might be)
overridden in a subclass, make it virtual

= There is a minuscule performance
penalty. Will that even matter to you?

= |.e. Have you profiled and tested your code to
show that virtual method calls are a performance
issue?

= When is this true?

= Almost always! Who knows how your code will
be used in the future?

BOSTON
UNIVERSITY

Constructors are never virtual in C++.

Destructors in a base class should
always be virtual.

= Also — if any method in a class is virtual,
make the destructor virtual

= These are important when dealing with
objects via reference and it avoids some
subtleties when manually allocating
memory.

Why all this complexity?

void FuncEarly(SuperVirtual &sP) void Funclate (SuperVirtual sP)
{ {
sP.PrintNum() ; sP.PrintNum() ;
} }
= Called by reference — late binding = Called by value — early binding to
to PrintNum() PrintNum even though it’s virtual!

= Late binding allows for code libraries to be updated for new functionality. As methods are identified
at runtime the executable does not need to be updated.

= This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation
code.
= Greater flexibility when dealing with multiple subclasses of a superclass.

= Most of the time this is the behavior you are looking for when building class hierarchies.

BOSTON
UNIVERSITY

Shape

Remember the Deadly Diamond of
Death? Let's explain.

Look at the class hierarchy on the right.
= Square and Circle inherit from Shape
= Squircle inherits from both Square and Circle
= Syntax:

virtual float print info () {}

class Squircle : public Square, Circle

The Shape class implements an empty

print_info() method. The Square and virtual float ietusl float

Circle classes override it. Squircle does print_inte) t.J print_info ()
{..}

not.

= Under late binding, which version of
print_info() is accessed from Squircle?
Square. info() or Circle. info()? [

Square Circle

Squircle }

BOSTON
UNIVERSITY

Squircle is not a made-up word.

https://en.wikipedia.org/wiki/Squircle

Interfaces

= Interfaces are a way to have your
classes share method names without
them sharing actual code.

= ...and hopefully methods with the same name
are implemented to do the same thing, that’s Square
up to you!

= Gives much of the benefit of multiple

Inheritance without the complexity and = Example: for debugging you want each class
pitfalls to have a Log() method that writes some info
to a file.

= |Implement with an interface.

BOSTON
UNIVERSITY

Interfaces

An interface class in C++ is called a pure virtual class.

It contains virtual methods only with a special syntax.
Instead of {} the function is set to O.
= Any subclass must implement pure virtual methods!

Modified Square.h shown.
What happens when this is compiled?

(..error..)
include/square.h:10:7: note: because the following wvirtual
functions are pure within 'Square':
class Square : public Rectangle, Log
include/square.h:7:18: note: wvirtual void Log::LogInfo ()
virtual void LogInfo ()=0 ;

Once the Loglinfo() is uncommented it will compile.

BOSTON
UNIVERSITY

#ifndef SQUARE H
#define SQUARE H

#include "rectangle.h"

class Log {
virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{
public:
Square (float length);
virtual ~Square() ;
// virtual void LogInfo () {}
protected:

private:

};

#endif // SQUARE H

Putting it all together

= Now let’s revisit our Shapes

2272

project.
= Open the “Shapes with Circle”
project. Rectangle
= This has a Shape base class with a
Rectangle and a Square l

= Add a Circle class to the class

: : : : Square
hierarchy in a sensible fashion. 1

= Hint: Think first, code second.

BOSTON
UNIVERSITY

L)

New pure virtual Shape class

: : : #ifndef SHAPE H
= Slight bit of trickery: fdefine SHAPE H

= An empty constructor is defined in shape.h
= No need to have an extra shape.cpp file if these

functions do nothing! class Shape
{
public:
= Q: How much code can be in the header file? Shape () {}
: : . virtual ~Shape() {}
= A: Most of it with some exceptions. P
= .h files are not compiled into .o files so a virtual float Area()=0 ;
header with a lot of code gets re-compiled protected:
every time it's referenced in a source file. ot
. . . rivatce:
= In other words, avoid putting source code in .h }; P
files.

fendif // SHAPE H

BOSTON
UNIVERSITY

Give it a try
= Add inheritance from Shape = |f you just want to see a
to the Rectangle class solution, open the project
= Add a Circle class, inheriting "Shapes with Circle solved”

from wherever you like.

* Implement Area() for the
Circle

BOSTON
UNIVERSITY

A Potential Solution

= A Circle has one dimension
(radius), like a Square.

= Would only need to override the
Area() method

= But...

= Would be storing the radius in the
members m_width and m_length.
This is not a very obvious to

someone else who reads your code.

= Maybe:

= Change m_width and m_length
names tom_dim_1 and m_dim_27?

isJeRgNeINl = Just makes everything more muddled!
UNIVERSITY

Rectangle

|

Square

A Better Solution

= [nherit separately from the Shape
base class

= Seems logical, to most people a
circle is not a specialized form of
rectangle...

= Add a member m_radius to store
the radius.

= |mplement the Area() method
= Makes more sense!

= Easy to extend to add an Oval
class, etc.

BOSTON
UNIVERSITY

Rectangle

|

Square

#ifndef CIRCLE H
#define CIRCLE H

New Circle class

#include "shape.h"

= Also inherits from Shape class Circle : public Shape

= Adds a constant value for &t {
= Constant values can be defined right in the public:
header file. Circle();

Circle(float radius) ;

= |f you accidentally try to change the value of PI
y yuy g virtual ~Circle();

the compiler will throw an error.

virtual float Area() ;

const float PI = 3.14;
float m radius ;

protected:

private:

};

BOSTON #endif // CIRCLE H
UNIVERSITY —

#include "circle.h"

Circle: :Circle()

{
//ctor

= circle.cpp
. Circle: :~Circle()
= Questions? {

//dtor
}

// Use a member initialization list.
Circle::Circle(float radius) : m radius{radius}

{}

float Circle::Area()

{
// Quiz: what happens if this line 1is
// uncommented and then compiled:
//PI=3.14159 ;
return m radius * m radius * PI ;

BOSTON
UNIVERSITY

Quiz time!

void PrintArea (Shape &shape) {

cout << "Area: " << shape.Area() << endl ;
}
= What happens behind e maan 0
the scenes when the Square sQ(4) ;

. . . Circle circ(3.5) ;
function PrintArea iIs Rectangle o7 (1.2
called?

i . . // Print everything
= How about if PrintArea’s PrintArea(sQ)
argument was instead.: PrintArea(rT) ;
PrintArea(circ) ;
return O;
vold PrintArea (Shape shape) }

BOSTON
UNIVERSITY

Quick mention...

= Aside from overriding functions it
IS also possible to override

operators in C++.

= As seeninthe C++ string. The +
operator concatenates strings:

= |t's possible to override +,-,=,<,>,
brackets, parentheses, etc.

BOSTON
UNIVERSITY

string str = "ARC" ;
str = str + "DEF" ;
// str is now "ABCDEE"

Syntax:

MyClass operator* (const MyClass& mC) {...}

Recommendation:

= Use with great caution. This Is an
easy way to write very confusing
code.

= A well-named function will almost
always be easier to understand than
an operator.
An exceptions is the assignment

operator. operator=

Summary

= C++ classes can be created in hierarchies via = Subclasses can override a superclass
inheritance, a core concept in OOP. method for their own purposes and can still

= Classes that inherit from others can make use explicitly call the superclass method.
of the superclass’ public and protected = Abstraction means hiding details when they
members and methods don’t need to be accessed by external code.

= You write less code! = Reduces the chances for bugs.

= Virtual methods should be used = While there is a lot of complexity here —in
whenever methods will be overridden in terms of concepts, syntax, and application —
subclasses. keep in mllnc_j that OOP is a highly successful

way of building programs!

= Avoid multiple inheritance, use interfaces

Instead.

BOSTON
UNIVERSITY

Some OOP Guidelines

= Here are some guidelines for putting together a program using OOP to keep in mind while getting
up and running with C++.

= Keep your classes simple and single = Follow the KISS principle:
PUrpose. = “Keep it simple stupid”

= Logically organize your classes to re-use = "Keep ft simple, silly”
code via inheritance. = "Keep it short and sweet

= “Make Simple Tasks Simple!” — Bjarne
Stroustroup

“Make everything as simple as possible, but
not simpler” — Albert Einstein

= Use interfaces in place of multiple
Inheritance .

= Keep your methods short

= Many descriptive methods that do little things
Is easier to debug and understand.

BOSTON
UNIVERSITY

Putting your classes together

= Effective use of OOP demands that the programmer think/plan/design first and code second.
= There is a large body of information on this topic:

{=
jo

GO gle approaches to designing object oriented software

All Shopping mages News Videos More Settings Tools

About 6,130,000 results (0.65 seconds)

= As this is an academic institution your code may:
= Live on in your lab long after you have graduated
= Be worked on by multiple researchers
= Adapted to new problems you haven’t considered
= Be shared with collaborators

= For more structured environments (ex. a team of professional programmers) there exist concepts

like SOLID:

= https://en.wikipedia.org/wiki/SOLID (object-oriented design)
= ...and there are many others.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Keep your classes simple

= Avoid “monster” classes that implement everything including the kitchen sink.

= Our Rectangle class just holds dimensions and calculates its area.
= |t cannot print out its area, send email, draw to the screen, etc.

= Single responsibility principle: = Resource Allocation Is Initialization (RAII):
= Every class has responsibility for one piece of functionality = A late 80’s concept, widely used in OOP.
in the program. = https://en.wikipedia.org/wiki/Resource_acquisiti
» https://en.wikipedia.org/wiki/Single_responsibility principle on_is_initialization
= Example: = ALL Resources in a class are created in the
= An Image class holds image data and can read and write it constructor and released in the destructor.
from disk. = Example: opening files, allocating memory, etc.
= A second class, ImageFilter, has methods that manipulate -

_ If an object is created it is ready to use.
Image objects and return new ones.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Single_responsibility_principle

Further learning

= When looking for C++ = Some tutorials:
tutorials and guides, look for = https://cplusplus.com/doc/tutors
ones that use at least the al/
C++11 standard. = https://www.w3schools.com/CP
= This is “modern C++” P/default.asp
= Books:

= Effective Modern C++

* The C++ Programming
Language

BOSTON
UNIVERSITY

https://cplusplus.com/doc/tutorial/
https://www.w3schools.com/CPP/default.asp
https://www.aristeia.com/books.html
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840/ref=zg_bs_9045760011_19/134-0632342-6287262?pd_rd_i=0321563840&psc=1

