
Introduction to C++: Part 2

Tutorial Outline: Part 2

▪ Compiler Options

▪ References and Pointers

▪ Solve a Programming Problem

▪ Intro to the Standard Template Library

▪ Function Overloads

▪ Generic Functions

Existing SCC Account

1. Open a web browser

2. Navigate to http://scc-ondemand.bu.edu

3. Log in with your BU Kerberos Credentials

Temporary Tutorial Account

1. Open a web browser

2. Navigate to http://scc-ondemand-2fa.bu.edu

3. Log in with Tutorial Account

http://scc-ondemand.bu.edu/
http://scc-ondemand-2fa.bu.edu/

Click on Interactive Apps/Desktop

3

eclipse/2019-06

gcc/8.3.0

click

When your desktop is ready click Connect to Desktop

▪ Enter this command to create a

directory in your home folder and to

copy in tutorial files:

/net/scc2/scratch/intro_to_cpp_2.sh

Run the Eclipse software
▪ Start up the Eclipse development environment.

▪ When this window appears just click the Launch button:

eclipse &

Run the Eclipse software

▪ When this window appears just leave it be for now.

Compiler Options

▪ The g++ compiler has a vast array of options:
▪ https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Invoking-GCC.html#Invoking-GCC

▪ This is typical for compiled languages.

▪ Turning on optimizations makes the compiler work harder to produce code

that will execute faster.
▪ What happens in optimization? https://en.wikipedia.org/wiki/Optimizing_compiler

https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Invoking-GCC.html#Invoking-GCC
https://en.wikipedia.org/wiki/Optimizing_compiler

Compiler Options (for g++ 8.3.0)

▪ Common flags:

▪ -g Support for debugging. Sometimes not completely effective with (any) optimization turned on.

▪ -std=c++11 Enable C++11 standards (on by default in 8.3.0)

▪ These work too with 8.3.0: c++14, c++17

▪ If you want newer support (say c++20) use a newer g++, accessed thru the SCC gcc modules.

▪ -Og Optimize but don’t do anything that will cause issues while running the debugger.

▪ -O, -O2, -O3 Produce optimized code. The higher numbers let the compiler try more strategies to

generate code. They are less likely to have an impact.

▪ Can be combined with -g but makes debugging more difficult.

▪ -ffast-math -funsafe-math-optimizations May produce code that does not conform to IEEE standards for

floating point computations. Try it with your program and see if it has any impact on accuracy and/or

speed.

▪ -march=sandybridge On the SCC, allow for some special CPU instructions (AVX) to be generated for

some code that may result in better performance. Use the qsub option “-l avx” to run code compiled with

this flag.

Using Compiler Options

▪ An IDE like Eclipse will apply these for you when building.

▪ On the command line (for a single source file program):

g++ -o my_program -g my_source.cpp

g++ -o my_program -O3 my_source.cpp

Debug

Release

g++ -o my_program –g -Og my_source.cpp
Debug with

optimizations

Tutorial Outline: Part 2

▪ Compiler Options

▪ References and Pointers

▪ Solve a Programming Problem

▪ Intro to the Standard Template Library

▪ Function Overloads

▪ Generic Functions

Pass by Value

▪ C++ defaults to pass by value behavior when calling a function.

▪ The function arguments are copied when used in the function.

▪ Changing the value of L or W in the RectangleArea1 function does not effect their original values in

the main() function

▪ When passing objects as function arguments it is important to be aware that potentially large data

structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

Pass by Reference

▪ Pass by reference behavior is triggered when the & character is used to modify the type of the

argument.

▪ Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the

function that references the memory location of the original variable. The syntax of using the

argument in the function does not change.

▪ The const modifier can be used to prevent changes to the original variable in main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

▪ In C++ arguments to functions can be objects…
▪ Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

▪ Pass by value requires a copy – 1 MB

▪ pass by reference requires 8 bytes.

main()

string str1

string str2

string proc_strings(const string& s1, const string& s2)

string s1

string s2

reference

reference

string result return s1 + s2

copy or reference?

▪ Returning references is allowed but the reference’d value must be in memory. Here – the new string is local to the function.

Don’t return a reference to it, that string will get cleaned up when the function is done! Return as a copy.

▪ But…compilers will help here….

Rules of thumb for function/method arguments

▪ Basic types (int, float, etc) just pass by value unless you need to use them

to return values.
▪ int - 4 bytes

▪ int& - 8 bytes (64-bit memory address)

▪ Pass all objects by reference.
▪ use the const modifier in the function definition whenever appropriate to protect yourself from

accidentally modifying variables.

Tutorial Outline: Part 2

▪ Compiler Options

▪ References and Pointers

▪ Solve a Programming Problem

▪ Intro to the Standard Template Library

▪ Function Overloads

▪ Generic Functions

▪ Loop with a “for” loop, referencing the value of vec using brackets.

▪ 1st time through:
▪ i = 0

▪ Print its value

▪ i gets incremented by 1

▪ 2nd time through:
▪ i = 1

▪ Etc

▪ After last time through
▪ Loop exits

▪ Loop variable i was declared with the loop – it is NOT available after the loop!

for (int i = 0 ; i < 10; ++i)

{

// ++i means "add 1 to the value of index"

cout << i << " " ;

}

L
o
o

p
in

g
Loop variable Loop if true Change applied to loop variable after each iteration

Problem 1 from Project

Euler

If we list all the natural numbers below 10 that are

multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these

multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

answer <- 0

for (i in 1:999) {

if (i %% 3 == 0 | i %% 5 == 0)

answer <- answer + i

}

print(answer)

Solution in R

numsum = 0

for i in range(1000):

if (i%3 == 0 or i%5==0):

numsum += i

print(f'The sum is: {numsum}')

Solution in Python

n = 1:(999/3);

N = 1:(999/5);

multiples_3 = 3.*n;

multiples_5 = 5.*N;

allmultiples = [multiples_3 multiples_5];

answer = sum(unique(allmultiples));

fprintf('The answer is %.0d\n',answer)

Solution in Matlab (no loops)

Let’s work out a C++

version of this.

https://projecteuler.net/problem=1

▪ Arithmetic: + - * / % ++ --

▪ Logical: && (AND) || (OR) ! (NOT)

▪ Example: x || !y is “x OR NOT y”

▪ Comparison: == > < >= <= !=

// C++ if/else statement

if (boolean condition1) {

// do this if true

} else if (condition2) {

// rather do this if

// true

} else {

// the default

}
for (int i = 0 ; i < 10; ++i)

{

cout << i << " " ;

}

// C++ if statement

if (condition) {

// do this if true

}

If we list all the natural numbers below 10 that are

multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these

multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Answer: 233168.

▪ Start an Eclipse project

▪ Implement the solution in the main()

routine.

▪ Got that working? Move it to a function

that takes the max integer as an

argument.

Pieces of C++ you’ll need

Stepping back a bit

▪ Summary so far:
▪ Basics of C++ syntax

▪ Declaring variables

▪ Defining functions

▪ Using the IDE

▪ As an object-oriented language C++ supports a core set of OOP

concepts.

▪ Knowing these concepts help with understanding some of the underlying

design of the language and how it operates in your programs.

The formal concepts in OOP

▪ The core concepts in addition to

classes and objects are:
▪ Encapsulation

▪ Inheritance

▪ Polymorphism

▪ Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Core Concepts

▪ Encapsulation

▪ Bundles related data and functions

into a class

▪ Inheritance

▪ Builds a relationship between classes

to share class members and methods

▪ Abstraction

▪ The hiding of members, methods,

and implementation details inside of a

class.

▪ Polymorphism

▪ The application of the same code to

multiple data types

Core Concepts in this tutorial

▪ Encapsulation

▪ Demonstrated by writing some

classes

▪ Inheritance

▪ Write classes that inherit (re-use) the

code from other classes.

▪ Abstraction

▪ Design and setup of classes,

discussion of the Standard Template

Library (STL).

▪ Polymorphism

▪ Function overloading, template code,

and the STL

Tutorial Outline: Part 2

▪ Compiler Options

▪ References and Pointers

▪ Solve a Programming Problem

▪ Intro to the Standard Template Library

▪ Function Overloads

▪ Generic Functions

The Standard Template Library

▪ The STL is a large collection of containers and algorithms that are part of

C++.
▪ It provides many of the basic algorithms and data structures used in computer science.

▪ As the name implies, it consists of generic code that you specialize as

needed.

▪ The STL is:
▪ Well-vetted and tested.

▪ Well-documented with lots of resources available for help.

Containers

▪ There are 16 types of containers in the STL (C++11):

Container Description

array 1D list of elements.

vector 1D list of elements

deque Double ended queue

forward_list Linked list

list Double-linked list

stack Last-in, first-out list.

queue First-in, first-out list.

priority_queue 1st element is always the

largest in the container

Container Description

set Unique collection in a specific

order

multiset Elements stored in a specific

order, can have duplicates.

map Key-value storage in a specific

order

multimap Like a map but values can

have the same key.

unordered_set Same as set, sans ordering

unordered_multiset Same as multisetset, sans

ordering

unordered_map Same as map, sans ordering

unordered_multimap Same as multimap, sans

ordering

Specifying the Type

▪ The STL is implemented entirely in

header (.h) files. When used in

your program, the compiler

generates the required code as

needed.

▪ You must tell the compiler what sort

of types STL containers will hold.

#include <vector>

#include <unordered_map>

#include <tuple>

using namespace std ;

vector<int> v(3); // Declare a vector of integers

// A map with string keys that holds doubles.

unordered_map<string, double> my_map ;

// insert a value

my_map["xyz"] = 2.0 ;

// get a value

auto val = my_map["xyz"] ;

// A tuple containing an int and a character

tuple<int,char> tpl (10,'x');

int z = get<0>(tpl) ; // retrieve the int at location 0

Algorithms

▪ There are 85+ of these.

▪ Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

▪ Algorithms manipulate the data stored in containers but is not tied to STL containers

▪ These can be applied to your own collections or containers of data

▪ Example:

▪ The implementation is hidden and the necessary code for reverse() is generated from

templates at compile time.

vector<int> v(3); // Declare a vector of 3 elements.

v[0] = 7;

v[1] = 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 3, v[2] == 10

reverse(v.begin(), v.end()) ; // v[0] == 10, v[1] == 3, v[2] == 7

https://cplusplus.com/reference/algorithm/

vector<T>
▪ A very common and useful class in C++ is the vector class. Access it with:

▪ Vector has many methods:

▪ Various constructors

▪ Ways to iterate or loop through its contents

▪ Copy or assign to another vector

▪ Query vector for the number of elements it contains or its backing storage size.

▪ Example usage: vector<float> my_vec ; // an empty float vector

▪ Or: vector<float> my_vec(50) ; // ready for 50 elements

#include <vector>

// optional

using namespace std ;

▪ Hidden from the programmer is the backing store

▪ Object oriented design in action!

▪ This is how the vector stores its data internally.

vector<T>

Contains N elements. Given by size() method.

Allocated for a total of M

elements

Given by capacity() method.

Add some more to the vector

New memory is allocated.

Old data is copied in.

New M > old M.

Old allocation is destroyed.

Allocated for a total of M’

elements

Construction and Destruction

▪ A special function called the

constructor is called when an

object is created.

▪ This is used to initialize an object:

▪ Load values into member variables

▪ Open files

▪ Connect to hardware, databases,

networks, etc.

▪ The destructor is called when an

object goes out of scope.

▪ Example:

▪ Object c1 is created when the

program reaches the first line of

the function and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

// stuff happens…

}

Scope
▪ Scope is the region where a variable is valid.

▪ Constructors are called when an object is created.

▪ Destructors are called automatically when a variable is out of scope.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 in that order

// variable x: no destructor for built-in type

Destructors

▪ vector<t> can hold most types of objects:
▪ Primitive (aka basic) types: int, float, char, etc.

▪ Objects: string, your own classes, file objects, etc.

▪ Pointers: int*, string*, etc.

▪ But NOT references!

▪ When a vector is destroyed:
▪ If it holds primitive types or pointers it just deallocates its backing store.

▪ If it holds objects it will call each object’s destructor before freeing its backing store.

Vector of Objects Destruction

xyz

abc

void function(string a, string b) { {

vector<string> vec_string = {a,b} ;

// do something with the vector

} // leaving, call the vec_string destructor

// …somewhere in the program…

str_function("xyz","abc")

vec_string

▪ String “abc” is destroyed

first

▪ Then “xyz”

▪ i.e. in reverse order

▪ Then vec_string

unused

capacity

vector<t> with objects

▪ Select an object in a vector.

▪ The members and methods can be

accessed directly.

▪ Elements can be accessed with

brackets and an integer starting

from 0.

// a vector with memory preallocated to

// hold 1000 objects.

vector<MyClass> my_vec(1000);

// Now make a vector with 1000 MyClass objects

// that are initialized using the MyClass constructor

vector<MyClass> my_vec2(1000,MyClass(arg1,arg2));

// Access an object's method.

my_vec2[100].some_method() ;

// Or a member

my_vec2[10].member_integer = 100 ;

// Clear out the entire vector

my_vec2.clear()

// but that might not re-set the backing store…

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

http://www.cplusplus.com/reference/vector/vector/clear/

▪ Loop with a “for” loop, referencing the value of vec using brackets.

▪ 1st time through:
▪ index = 0

▪ Print value at vec[0]

▪ index gets incremented by 1

▪ 2nd time through:
▪ Index = 1

▪ Etc

▪ After last time through
▪ Index now equal to vec.size()

▪ Loop exits

▪ Careful! Using an out of range index will likely cause a memory error that crashes your

program.

for (int index = 0 ; index < vec.size() ; ++index)

{

// ++index means "add 1 to the value of index"

cout << vec[index] << " " ;

}

L
o
o

p
in

g

Iterators

▪ Iterators are generalized ways of keeping track of positions in a container.

▪ 3 types: forward iterators, bidirectional, random access

▪ Forward iterators can only be incremented (as seen here)

▪ Bidirectional can be added or subtracted to move both directions

▪ Random access can be used to access the container at any location

▪ Bracket indexing [] is an example of random access.

vec[0] vec[1] vec[2]vec.begin()

vec.begin()+1

vec.begin()+2

vec.end()

for (vector<int>::iterator itr = vec.begin(); itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

// iterators are pointers!

}

▪ Loop with a “for” loop, referencing the value of vec using an iterator type.

▪ vector<int>::iterator is a type that iterates through a vector of int’s.

▪ 1st time through:

▪ itr points at 1st element in vec

▪ Print value pointed at by itr: *itr

▪ itr is incremented to the next element in the vector

▪ Iterators are very useful C++ concepts. They work on any STL container!

▪ No need to worry about the # of elements!

▪ Exact iterator behavior depends on the type of container but they are guaranteed to always

reach every value.

L
o
o

p
in

g

▪ Let the auto type asks the C++ compiler to figure out the iterator type automatically.

▪ An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.
▪ Save yourself a function call.

for (auto itr = vec.begin() ; itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

}

L
o
o

p
in

g

for (auto itr = vec.begin(), auto vec_end = vec.end() ; itr != vec_end ; ++itr)

{

cout << *itr << " " ;

}

▪ Another iterator-based loop: iterator behavior and accessing an element are handled

automatically by the compiler

▪ Uses a reference so the element is not copied.

▪ The const auto & prevents changes to the element in the vector.

▪ If you don’t use const then the loop can update the vector elements via the reference.

▪ Less typing == less chance for program bugs.

for(const auto &element : vec)

{

cout << element << " " ;

}

L
o
o

p
in

g

Iterator notes
▪ There is very small performance penalty for using iterators…but are they safer to use.

▪ They allow substitution of one container for another (list<> for vector<>, etc.)

▪ With your own template code you can write a function that accepts any STL container

type.

template<typename T>

void dump_string(T &t)

{ // print the contents of any STL container

for(auto itr=t.begin() ; itr!=t.end() ; itr++) {

cout << *itr << endl;

}

}

list<float> lst ;

lst.push_back(-5.0) ;

lst.push_back(12.0) ;

vector<double> vec(2) ;

vec[0] = 1.0 ;

vec[1] = 2.0 ;

dump_string<list<float> >(lst) ;

dump_string<vector<double> >(lst) ;

STL Demo

▪ Open project STL_Demo

▪ Let’s walk through the functions with the debugger and see

some vectors in action.

Tutorial Outline: Part 2

▪ Compiler Options

▪ References and Pointers

▪ Solve a Programming Problem

▪ Intro to the Standard Template Library

▪ Function Overloads

▪ Generic Functions

Function overloading

▪ The same function can be implemented

multiple times with different arguments.

▪ This allows for special cases to be

handled, or specialized behavior for

different types.

▪ cout and the << operator are an example

of function overloading
▪ << is just a function.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

Function overloading

▪ Overloaded functions are differentiated

by their arguments and not the return

type.
▪ The number of arguments and their types can be

varied.

▪ The compiler will decide which overload

to use depending on the types of the

arguments.

▪ If it can’t decide a compile-time error will

occur.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

C++ Templates (aka generics)

▪ Generic code is code that works on multiple different data types but is

only coded once.

▪ In C++ this is called a template.

▪ A C++ template is implemented entirely in a header file to define

generic classes and functions.

▪ The actual code is generated by the compiler wherever the template

is used in your code.

▪ There is NO PENALTY when your code is running!

C++ Templates (aka generics)

▪ Template code should be placed in header (.h) files.

▪ A source code file (.cpp) is not needed for template code.

▪ Expect longer compile times – the compiler has to do a lot more work.

▪ Executing code created by templates is often much faster when

compiler optimizations are turned on.

Sample template function

▪ The template is started with the keyword

template and is told it’ll handle a type which is

referred to as T in the code.

▪ Templates can be created with multiple different

types, not limited to just one.

▪ You don’t have to use T, any non-reserved word will

do.

▪ Specialize the template to the type you want to

use.

// In a header file

template <typename T>

T sum_template (T a, T b) {

return a+b ;

}

// Then call the function in a

// source file:

float x=1.0 ;

float y=2.0 ;

auto z=sum_template<float>(x,y) ;

An Example

▪ Open the project Overloads_and_templates

▪ This is an example of simple function overloads and a template function.

▪ New for 2022: Check out C++ Insights.
▪ Let’s go here: https://cppinsights.io/s/302c7276

https://cppinsights.io/s/302c7276

When to use function overloading and templates?

▪ When it makes your code easier to use, maintain, write, or debug!
▪ Overloads are easier to use effectively.

▪ Templating everything in your code does not make it better, just harder to

develop.
▪ Longer compiles, harder to debug, etc.

▪ More experienced C++ programmers should use these features where

appropriate.

