

Tutorial Outline: Part 2

- [Compiler Options }

= References and Pointers

= Solve a Programming Problem

= [ntro to the Standard Template Library
= Function Overloads

= Generic Functions

BOSTON
UNIVERSITY

Existing SCC Account Temporary Tutorial Account
1. Open a web browser 1. Open a web browser
2. Navigate to http://scc-ondemand.bu.edu 2. Navigate to http://scc-ondemand-2fa.bu.edu
3. Log in with your BU Kerberos Credentials 3. Log in with Tutorial Account

E Boston University | Login
https:/fscc-ondemand-2fa.bued X -+

<« (& @ shibbu.edu)
& @ scc-ondemand-2fa....

Sign in

Login
https:/fscc-ondemand-2fa.bu.edu

BU login name Username

Password
password

m I:-IE‘ I-I I:E. |

You have asked to login to scc-ondemand.bu.edu

UNIVERSITY

http://scc-ondemand.bu.edu/
http://scc-ondemand-2fa.bu.edu/

Click on Interactive Apps/Desktop

»
%)
Q
a
<
()
=
O
©
Lo
D
-
=

Login Nodes ~ Jobs~

Quotas ~

Files~

SCC OnDemand

Desktops

VAV,
\.\a\t\ \,\
\.\$ \\\\

soo,\)

o..

4 MATLAB

\

\ V_\\\\._
.._\\\\._\
\\ R AN V4 /

S S /))
\\\\\\\,\\\.

o

Servers

Jupyter Notebook

RStudio Server
& Shiny App Server

Access the SCC using only your web browser!

S

SCC OnDemand Documentation

« TensorBoard Server

BOST
UNIVER

Interactive Apps

Desktop
Desktops
This app will launch an interactive desktop on a compute node.
List of modules to load (space separated) .
4 MATLAB ecllpse/2019-06
eclipse/2019-06 gcc/8.3.0 Select Modules ¢ /8 3 O
Mathematica gCC e

Working Directory

@ Qcls
Select Directory
B SAS The directory to start in. (Defaults to home directory.)
STATA .
m Initial command to run
f& Spyder xfced-terminal

VirtualGL Desktop Number of hours

Servers 3 3

= Jupyter Notebook

Number of cores

@ RStudio Server
1

& Shiny App Server
Number of gpus
4 TensorBoard Server
0

Webserver
Project

SCV b

Extra qsub options

O | would like to receive an email when the session starts

— olick

B O S TON * The Desktop session data for this session can be accessed under the

UNIVERSITY

data root directory.

Desktop (6924) €D | Running

Host: e il Delete

Created at: 2020-02-04 14:53:50 EST
Time Remaining: 2 hours and 59 minutes

Session |D: 41466d74-9acy-4f73-b596-26 cffdfE cfab

Compression Image Quality
0 (low) to 9 (high) 0 (low) to 9 (high)

Connect to Deskiop Wiew Only (Share-able Link)

When your desktop is ready click Connect to Desktop

BOSTON
UNIVERSITY

= Enter this command to create a
directory in your home folder and to
copy In tutorial files:

/net/scc2/scratch/intro to cpp 2.sh

BOSTON
UNIVERSITY

Run the Eclipse software

= Start up the Eclipse development environment.

eclipse &

= When this window appears just click the Launch button:

@ Eclipse IDE Launcher X

Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

W
Workspace: | usrljscv/bgregorfeclipse-workspace - Browse...

Use this as the default and do not ask again

¢ Recent Workspaces

BOSTON Cancel
UNIVERSITY

Run the Eclipse software

- en this window appears just leave it be for now.

e eclipse-workspace - Eclipse IDE
File Edit Source Refactor Navigate Search Project Run Window Help

& gs,

Welcome 12

EC|Ip5e Welcome to Eclipse IDE for Scientific Computing

[FErR i

Workbench

A guided walk-through how to import

Review the IDE's most fiercely contested preferences

Create a new Eclipse project for C source code

Create a new Eclipse project for C++ source code

Open the New item wizard

Create a new Fortran Eclipse project

Checkout Eclipse projects hosted in a Git repository

BOSTON

UNIVERSITY

Import existing Eclipse projects from the filesystem or archive

Getan overview of the features

Go through tutorials

Try out the samples

Find out whatis new

\9 Always show Welcome at startup

.
Compiler Options

= The g++ compiler has a vast array of options:

= https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Invoking-GCC.html#Invoking-GCC
= This is typical for compiled languages.

= Turning on optimizations makes the compiler work harder to produce code
that will execute faster.

= What happens in optimization? https://en.wikipedia.org/wiki/Optimizing_compiler

BOSTON
UNIVERSITY

https://gcc.gnu.org/onlinedocs/gcc-8.3.0/gcc/Invoking-GCC.html#Invoking-GCC
https://en.wikipedia.org/wiki/Optimizing_compiler

R
Compiler Options (for g++ 8.3.0)

= Common flags:

BOSTON

-g Support for debugging. Sometimes not completely effective with (any) optimization turned on.
-std=c++11 Enable C++11 standards (on by default in 8.3.0)

= These work too with 8.3.0: c++14, c++17

= |f you want newer support (say c++20) use a newer g++, accessed thru the SCC gcc modules.

-Og Optimize but don’t do anything that will cause issues while running the debugger.

-0, -02, -O3 Produce optimized code. The higher numbers let the compiler try more strategies to
generate code. They are less likely to have an impact.

= Can be combined with -g but makes debugging more difficult.

-ffast-math -funsafe-math-optimizations May produce code that does not conform to IEEE standards for
floating point computations. Try it with your program and see if it has any impact on accuracy and/or
speed.

-march=sandybridge On the SCC, allow for some special CPU instructions (AVX) to be generated for
some code that may result in better performance. Use the gsub option “-| avx” to run code compiled with

UNIVERSITY |RGIERIET]

N
Using Compiler Options
= An IDE like Eclipse will apply these for you when building.

= On the command line (for a single source file program):

Debug gt+ -0 my program —-g my source.cpp

Debug with

optimizations gt+ -0 my program —g -0Og my_source.cpp

Release ' g++ -o my program -03 my source.cpp

BOSTON
UNIVERSITY

Tutorial Outline: Part 2

= Compiler Options

-[References and Pointers }

= Solve a Programming Problem

= [ntro to the Standard Template Library
= Function Overloads

= Generic Functions

BOSTON
UNIVERSITY

Pass by Value

main () RectangleAreal (float L, float W)

copy

float L P | float L
copy

float W P | float W

= C++ defaults to pass by value behavior when calling a function.
= The function arguments are copied when used in the function.

= Changing the value of L or W in the RectangleAreal function does not effect their original values in
the main() function

= When passing objects as function arguments it is important to be aware that potentially large data
structures are automatically copied!

BOSTON
UNIVERSITY

Pass by Reference

main () RectangleArea3 (const float& L, const floaté& W)

reference
float L float L
reference
float W float W

= Pass by reference behavior is triggered when the & character is used to modify the type of the
argument.

= Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the
function that references the memory location of the original variable. The syntax of using the
argument in the function does not change.

= The const modifier can be used to prevent changes to the original variable in main().

BOSTON
UNIVERSITY

= |n C++ arguments to functions can be objects...
= Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).
= Pass by value requires a copy — 1 MB
= pass by reference requires 8 bytes.

main () string proc strings(const string& sl, const stringé& s2)
r reference
string strl]{ [string sl]
, reference
string str2]4 [string s2]

[return sl + s2]

string result]{

copy or reference?

= Returning references is allowed but the reference’d value must be in memory. Here — the new string is local to the function.
Don’t return a reference to it, that string will get cleaned up when the function is done! Return as a copy.
= But...compilers will help here....

BOSTON
UNIVERSITY

Rules of thumb for function/method arguments

= Basic types (int, float, etc) just pass by value unless you need to use them

to return values.
= int - 4 bytes
= int& - 8 bytes (64-bit memory address)

= Pass all objects by reference.

= use the const madifier in the function definition whenever appropriate to protect yourself from
accidentally modifying variables.

BOSTON
UNIVERSITY

Tutorial Outline: Part 2

= Compiler Options

= References and Pointers

-[Solve a Programming Problem}

= [ntro to the Standard Template Library
= Function Overloads

= Generic Functions

BOSTON
UNIVERSITY

Loop variable \ Loop if true Change applied to loop variable after each iteration

/

A

for (int 1 = 0 ; 1 < 10; ++1i)

{
// ++1 means "add 1 to the value of index"
cout << 1 << " " ;

}

@) = Loop with a “for” loop, referencing the value of vec using brackets.
C t i .
o = 1sttime through:
(@ - =0
O = Printits value
o = jgetsincremented by 1
— = 2nd time through:
= =1
= Etc

= After last time through

= Loop exits
= Loop variable i was declared with the loop — it is NOT available after the loop!

BOSTON
UNIVERSITY

If we list all the natural numbers below 10 that are

PrOblem 1 frOm PrOJeCt multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these
multiples is 23.
Euler

Find the sum of all the multiples of 3 or 5 below 1000.

answer <- numsum = 0
for (i in 1:) {
if (i %% == | 1 %% == 0) for i in range(1000):
answer <- answer + i if (i%3 == 0 or i%$5==0):
} numsum += i
print (answer)
_ _ print(f'The sum is: {numsum} ')
Solutionin R
Solution in Python
n = 1:(999/3);
N = 1:(999/5);

.

multiples 3 *n;

multiples_5 *N; Let's work out a C++
allmultiples = qultiples_3lmultipl.es_S] ; version of this.
answer = sum(unigque(allmultiples));

fprintf ('The answer is %.0d\n',answer)

BOSTON
UNIVERSITY

Solution in Matlab (no loops)

https://projecteuler.net/problem=1

If we list all the natural numbers below 10 that are
multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these
multiples is 23.

= Start an Eclipse project

= Implement the solution in the main()
routine. Find the sum of all the multiples of 3 or 5 below 1000.

= (ot that working? Move it to a function

. Answer: 233168.
that takes the max integer as an

argument.
// C++ if/else statement // C++ 1if statement = Arithmetic: + - * [0 ++ -
if (boolean conditionl) { if (condition) {]

// do this if true // do this if true = Logical: && (AND) || (OR) ! (NOT)
} else if (condition?) f{ } = Example: x || 1y is“XxORNOTY”

// rather do this if _

// true = Comparison: == > < >= <= I=
} else {

// the default for (int i = 0 ; 1 < 10; ++1i)

! {

cout << 1 << " " ;
} Pieces of C++ you'll need

BOSTON
UNIVERSITY

Stepping back a bit

= Summary so far:
= Basics of C++ syntax
= Declaring variables
= Defining functions
= Using the IDE

= As an object-oriented language C++ supports a core set of OOP
concepts.

= Knowing these concepts help with understanding some of the underlying
design of the language and how it operates in your programs.

BOSTON
UNIVERSITY

The formal concepts in OOP

= The core concepts in addition to

classes and objects are:
= Encapsulation
= [nheritance
= Polymorphism
= Abstraction

BOSTON
UNIVERSITY

Polymorphism

Encapsulation

Abstraction

Core Concepts

= Encapsulation = Abstraction
= Bundles related data and functions = The hiding of members, methods,
Into a class and implementation details inside of a
class.

= |nheritance

= Builds a relationship between classes * Polymorphism
to share class members and methods = The application of the same code to
multiple data types

BOSTON
UNIVERSITY

Core Concepts in this tutorial

= Encapsulation = Abstraction
= Demonstrated by writing some = Design and setup of classes,
classes discussion of the Standard Template
Library (STL).

= |nheritance

- Write classes that inherit (re-use) the ~ ® Polymorphism
code from other classes. = Function overloading, template code,
and the STL

BOSTON
UNIVERSITY

Tutorial Outline: Part 2

= Compiler Options

= References and Pointers

= Solve a Programming Problem

-[Intro to the Standard Template Library}
= Function Overloads

= Generic Functions

BOSTON
UNIVERSITY

The Standard Template Library

= The STL is a large collection of containers and algorithms that are part of
C++.

= |t provides many of the basic algorithms and data structures used in computer science.

= As the name implies, it consists of generic code that you specialize as
needed.

= The STL is:
= Well-vetted and tested.
= Well-documented with lots of resources available for help.

BOSTON
UNIVERSITY

Containers
= There are 16 types of containers in the STL (C++11):

array 1D list of elements. Unique collection in a specific
vector 1D list of elements Sl

multiset Elements stored in a specific
deque Double ended queue order, can have duplicates.
forward_list Linked list map Key-value storage in a specific
list Double-linked list order
stack Last-in. first-out list multimap Like a map but values can

’ ' have the same key.
queue First-in, first-out list. unordered_set Same as set, sans ordering
. t : : :
RICATEEE Ils elemenals always the unordered_multiset Same as multisetset, sans
argest in the container ordering
unordered_map Same as map, sans ordering
unordered_multimap Same as multimap, sans

BOSTON - .
ordering

Specifying the Type

= The STL is implemented entirely in
header (.h) files. When used in
your program, the compiler
generates the required code as
needed.

= You must tell the compiler what sort
of types STL containers will hold.

BOSTON
UNIVERSITY

#include <vector>
#include <unordered map>
#include <tuple>

using namespace std ;
vector<int> v(3); // Declare a vector of integers
// A map with string keys that holds doubles.
unordered map<string, double> my map ;

// insert a value

my map["xyz"] = ;

// get a value

auto val = my map["xyz"] ;

// A tuple containing an int and a character
tuple<int,char> tpl (10, 'x");
int z = get<0>(tpl) ; // retrieve the int at location O

Algorithms

= There are 85+ of these.
= Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

= Algorithms manipulate the data stored in containers but is not tied to STL containers
= These can be applied to your own collections or containers of data

= Example:
vector<int> v (3); // Declare a vector of 3 elements.
v[0] = 7;
v[1l] = 3;
v[2] = v[0] + Vv[1]; // v[0] == 7, v[l] == 3, v[2] == 10
reverse (v.begin(), v.end()) ; // v[0] == 10, v[1l] == 3, v[2] == 7

= The implementation is hidden and the necessary code for reverse() is generated from
templates at compile time.

BOSTON
UNIVERSITY

https://cplusplus.com/reference/algorithm/

vector<T>

= A very common and useful class in C++ is the vector class. Access it with:

#include <vector>
// optional
using namespace std ;

= Vector has many methods:
= Various constructors
= Ways to iterate or loop through its contents
= Copy or assign to another vector
= Query vector for the number of elements it contains or its backing storage size.

. Example usage. vector<float> my vec ; // an empty float vector

= Or: vector<float> my vec(50) ; // ready for 50 elements

BOSTON
UNIVERSITY

vector<T>

= Hidden from the programmer is the backing store
= Object oriented design in action!

This is how the vector stores its data internally.

Allocated for a total of M’

| elements
Add some more to the vector [\
| . J
Contains N elements. Given by size() method. New memory Is allpcated.
Old data is copied in.

\ v J New M > old M.

Allocated for a total of M o

elements) Old allocation is destroyed.

Given by capacity() method.

BOSTON
UNIVERSITY

Construction and Destruction

= A special function called the = The destructor is called when an
constructor is called when an object goes out of scope.
object is created. = Example:
void function () {
= This is used to initialize an object: e
= Load values into member variables J
= Open files

= Object cl is created when the
program reaches the first line of
the function and destroyed when
the program leaves the function.

= Connect to hardware, databases,
networks, etc.

BOSTON
UNIVERSITY

Scope

= Scope is the region where a variable is valid.
= Constructors are called when an object is created.
= Destructors are called automatically when a variable is out of scope.

int main() { // Start of a code block
// in main function scope
float x ; // No constructors for built-in types
ClassOne cl ; // cl constructor ClassOne () 1is called.
if (1){ // Start of an inner code block
// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne () 1s called.
} // c2 destructor is called.
ClassOne ¢3 ; // c¢3 constructor ClassOne () is called.
} // leaving program, call destructors for c¢3 and cl in that order

// variable x: no destructor for built-in type

BOSTON
UNIVERSITY

N
Destructors

= vector<t> can hold most types of objects:

= Primitive (aka basic) types: int, float, char, etc.

= Objects: string, your own classes, file objects, etc.
= Pointers: int*, string*, etc.

= But NOT references!

= When a vector is destroyed.:

= |f it holds primitive types or pointers it just deallocates its backing store.
= |f it holds objects it will call each object’s destructor before freeing its backing store.

BOSTON
UNIVERSITY

Vector of Objects Destruction

vec_string

v

void function(string a, string b) { { ””’,”,,,,f—ff”"
vector<string> vec string = {a,b} ;

// do something with the vector

XyZ

} // leaving, call the vec string destructor

abc

// ..somewhere in the program..

str function("xyz","abc™)

I

unused
capacity

= String “abc” is destroyed
first

= Then “xyz”

l.e. In reverse order

= Then vec_string

BOSTON
UNIVERSITY

vector<t> with objects

// a vector with memory preallocated to
// hold 1000 objects.

= Select an object in a vector. vector<MyClass> my_vec(1000);

= The members and methods can be // Now make a vector with 1000 MyClass objects
d di il // that are initialized using the MyClass constructor
accesse irec y vector<MyClass> my vec2(1000,MyClass(argl,arg2)) ;
_ // Access an object's method.
= Elements can be accessed with my_vec2[100].some_method() ;
: : // Or a member
brackets and an integer starting ny vec2[10] .member integer = 100 ;

from O.

// Clear out the entire vector

my vecZ.clear ()

// but that might not re-set the backing store..

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

BOSTON
UNIVERSITY

http://www.cplusplus.com/reference/vector/vector/clear/

for (int index = 0 ; index < vec.size() ; ++index)

{
// ++index means "add 1 to the value of index"
cout << vec[index] << " " ;

= Loop with a “for” loop, referencing the value of vec using brackets.
= 1sttime through:

= index=0
= Print value at vec|0]
= index gets incremented by 1

= 2nd time through:
= Index=1
= Etc

= After last time through
= Index now equal to vec.size()
= Loop exits
= Careful! Using an out of range index will likely cause a memory error that crashes your
program.

Looping

BOSTON
UNIVERSITY

vec.begin () +1

Iterators vec.begin () +2
\ ,

vec.begin () — vec [0] vec[1] vec[2] —— Vvec.end ()

= |terators are generalized ways of keeping track of positions in a container.
= 3 types: forward iterators, bidirectional, random access

= Forward iterators can only be incremented (as seen here)

= Bidirectional can be added or subtracted to move both directions

= Random access can be used to access the container at any location
= Bracket indexing [] is an example of random access.

BOSTON
UNIVERSITY

for (vector<int>::iterator itr = vec.begin(); itr !'= vec.end() ,; ++itr)

{
cout << *itr << " " ;

// iterators are pointers!

= Loop with a “for” loop, referencing the value of vec using an iterator type.
" vector<int>::iterator IS atype that iterates through a vector of int’s.

= 1sttime through:
= |tr points at 15t element in vec
= Print value pointed at by itr: *itr
= jtr is incremented to the next element in the vector

= |terators are very useful C++ concepts. They work on any STL container!
= No need to worry about the # of elements!

= Exact iterator behavior depends on the type of container but they are guaranteed to always
reach every value.

Looping

BOSTON
UNIVERSITY

for (auto itr = vec.begin() ; itr !'= vec.end() ; ++itr)

{
cout << *jitr << " "

= Let the auto type asks the C++ compiler to figure out the iterator type automatically.

for (auto itr = vec.begin(), auto vec end = vec.end() ; itr != vec end ; ++itr)

{
cout << *itr << " " ;

Looping

= An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.
= Save yourself a function call.

BOSTON
UNIVERSITY

for (const auto &element : wvec)

{
cout << element <« " " ;

}

= Another iterator-based loop: iterator behavior and accessing an element are handled
automatically by the compiler

= Uses a reference so the element is not copied.
= The const auto & prevents changes to the element in the vector.
= |f you don’t use const then the loop can update the vector elements via the reference.

Looping

= Less typing == less chance for program bugs.

BOSTON
UNIVERSITY

Ilterator notes

= There is very small performance penalty for using iterators...but are they safer to use.

= They allow substitution of one container for another (list<> for vector<>, etc.)

= With your own template code you can write a function that accepts any STL container
type.

template<typename T>
void dump string (T &t)
{ // print the contents of any STL container
for(auto itr=t.begin() ; itr!=t.end() ; itr++) {
cout << *itr << endl;

}

list<float> 1lst ;

lst.push back (-) 7
lst.push back() 7
vector<double> vec(”) ;
vecl[U] = ;

vecl[l] = ;

dump string<list<float> > (lst) ;
dump string<vector<double> > (lst) ;

BOSTON
UNIVERSITY

STL Demo

= Open project STL _Demo

= Let's walk through the functions with the debugger and see
some vectors in action.

BOSTON
UNIVERSITY

Tutorial Outline: Part 2

= Compiler Options

= References and Pointers

= Solve a Programming Problem

= [ntro to the Standard Template Library
[- Function Overloads }

= Generic Functions

BOSTON
UNIVERSITY

Function overloading

= The same function can be implemented float sum(float a, float b) {
multiple times with different arguments. return atb ;
}
= This allows for special cases to be int sum(int a, int b) {
- - i return a+b ;
handled, or specialized behavior for }
different types.

= cout and the << operator are an example
of function overloading
* << isjust a function.

BOSTON
UNIVERSITY

Function overloading

= Qverloaded functions are differentiated

by their arguments and not the return float sum(float a, float b) {
tvpe return a+b ;
ype. \
= The number of arguments and their types can be
varied. int sum(int a, int b) {

return a+b ;

}

= The compiler will decide which overload
to use depending on the types of the
arguments.

= [fit can’'t decide a compile-time error will
occur.

BOSTON
UNIVERSITY

C++ Templates (aka generics)

= Generic code is code that works on multiple different data types but is
only coded once.

= In C++ this is called a template.

= A C++ template is implemented entirely in a header file to define
generic classes and functions.

= The actual code is generated by the compiler wherever the template
IS used in your code.
= There is NO PENALTY when your code is running!

BOSTON
UNIVERSITY

C++ Templates (aka generics)

= Template code should be placed in header (.h) files.

= A source code file (.cpp) is not needed for template code.

= Expect longer compile times — the compiler has to do a lot more work.

= EXxecuting code created by templates is often much faster when
compiler optimizations are turned on.

BOSTON
UNIVERSITY

Sample template function

= The template is started with the keyword
template and is told it'll handle a type which is ~—_ // In a header file

- template <typename T>
referred to as T in the code. I sum template (T a, T b) {

= Templates can be created with multiple different return a+b
types, not limited to just one. }

= You don’t have to use T, any non-reserved word will
do.

14

// Then call the function 1in a

// source file:
- float x=1.0 ;
= Specialize the template to the type you want to float y=2.0 ;
use. =P auto z=sum template<float>(x,y) ;

BOSTON
UNIVERSITY

An Example

= Open the project Overloads and_templates

= This is an example of simple function overloads and a template function.

= New for 2022: Check out C++ Insights.
= Let's go here: https://cppinsights.io/s/302c7276

BOSTON
UNIVERSITY

https://cppinsights.io/s/302c7276

When to use function overloading and templates?

= When it makes your code easier to use, maintain, write, or debug!
= Qverloads are easier to use effectively.

= Templating everything in your code does not make it better, just harder to
develop.

= Longer compiles, harder to debug, etc.

= More experienced C++ programmers should use these features where
appropriate.

BOSTON
UNIVERSITY

