
Introduction to C++: Part 1
tutorial version 0.8

Research Computing Services

Getting started with the training room terminals

▪ Log on with your BU username
▪ If you don’t have a BU username:

▪ Username: Choose tutm1-tutm18, tutn1-tutn18

▪ Password: on the board.

SCC OnDemand

▪ Based on an NSF-funded open source project “Open OnDemand”,

developed by the Ohio Supercomputing Center (OSC) and fully

customized for the BU Shared Computing Cluster (SCC). Provides cluster

access entirely through a webbrowser.

▪ Provides:
▪ Easy file management

▪ Command-line shell access

▪ Graphical desktop environments and desktop applications

▪ Web-server based applications (e.g. RStudio, Jupyter, Tensorboard)

Existing SCC Account

1. Open a web browser

2. Navigate to http://scc-ondemand.bu.edu

3. Log in with your BU Kerberos Credentials

Temporary Tutorial Account

1. Open a web browser

2. Navigate to http://scc-ondemand-2fa.bu.edu

3. Log in with Tutorial Account

http://scc-ondemand.bu.edu
http://scc-ondemand-2fa.bu.edu

Click on Interactive Apps/Desktop

3

eclipse/2019-06

click

When your desktop is ready click Connect to Desktop

▪ Enter this command to create a

directory in your home folder and to

copy in tutorial files:

/net/scc2/scratch/intro_to_cpp.sh

Run the Eclipse software

▪ Enter this command to start up the Eclipse development

environment.

▪ When this window appears just click the Launch button:

eclipse &

Run the Eclipse software

▪ When this window appears just leave it be for now.

Tutorial Outline: All 4 Parts

▪ Part 1:

▪ Intro to C++

▪ Object oriented concepts

▪ Write a first program

▪ Part 2:

▪ Using C++ objects

▪ Standard Template Library

▪ Basic debugging

▪ Part 3:

▪ Defining C++ classes

▪ Look at the details of how they

work

▪ Part 4:

▪ Class inheritance

▪ Virtual methods

▪ Available C++ tools on the

SCC

Tutorial Outline: Part 1

▪ Very brief history of C++

▪ Definition object-oriented programming

▪ When C++ is a good choice

▪ The Eclipse IDE

▪ Object-oriented concepts

▪ First program!

▪ Some C++ syntax

▪ Function calls

Very brief history of C++

For details more check out A History of C++: 1979−1991

C

C++

http://www.stroustrup.com/hopl2.pdf

Object-oriented programming

▪ OOP defines classes to represent

these things.

▪ Classes can contain data and methods

(internal functions).

▪ Classes control access to internal data

and methods. A public interface is

used by external code when using the

class.

▪ This is a highly effective way of

modeling real world problems inside of

a computer program.

public interface

private data and methods

“Class Car”

Characteristics of C++
“Actually I made up the term ‘object-oriented’, and I can tell you I did

not have C++ in mind.”

– Alan Kay (helped invent OO programming, the Smalltalk language, and the GUI)

▪ C++ is…

▪ Compiled.

▪ A separate program, the compiler, is used to turn C++ source code into a form directly

executed by the CPU.

▪ Strongly typed and unsafe

▪ Conversions between variable types must be made by the programmer (strong typing) but can

be circumvented when needed (unsafe)

▪ C compatible

▪ call C libraries directly and C code is nearly 100% valid C++ code.

▪ Capable of very high performance

▪ The programmer has a very large amount of control over the program execution, compilers

are high quality.

▪ Object oriented

▪ With support for many programming styles (procedural, functional, etc.)

▪ No automatic memory management (mostly)

▪ The programmer is in control of memory usage

When to choose C++

▪ Despite its many competitors C++ has remained popular for ~30 years and will

continue to be so in the foreseeable future.

▪ Why?

▪ Complex problems and programs can be effectively implemented

▪ OOP works in the real world.

▪ No other language quite matches C++’s combination of performance, libraries,

expressiveness, and ability to handle complex programs.

When to choose C++

▪ Choose C++ when:

▪ Program performance matters

▪ Dealing with large amounts of data, multiple CPUs, complex algorithms, etc.

▪ Programmer productivity is less important

▪ You’ll get more code written in less time in a languages like Python, R, Matlab, etc.

▪ The programming language itself can help organize your code

▪ In C++ your objects can closely model elements of your problem

▪ Complex data structures can be implemented

▪ Access to a vast number of libraries

▪ Your group uses it already!

“If you’re not at all interested in performance, shouldn’t you

be in the Python room down the hall?”

― Scott Meyers (author of Effective Modern C++)

http://www.aristeia.com/books.html

Behind the Scenes: The Compilation Process

Manual Compiling

▪ Launch a convenient editor:

▪ Enter in a “hello world” program as

shown. Ctrl-S saves the file.

▪ Compile and run the program:

geany first_prog.cpp &

g++ -o first_prog first_prog.cpp

./first_prog

#include <iostream>

using namespace std ;

int main() {

// prints !!!Hello World!!!

cout << "!!!Hello World!!!" << endl ;

return 0 ;

}

Hello, World! explained The main routine – the start of every C++ program! It

returns an integer value to the operating system and (in

this case) takes arguments to allow access to command

line arguments.

The return statement returns an integer value to the

operating system after completion. 0 means “no error”. C++

programs must return an integer value.

The two characters // together indicate a comment that is

ignored by the compiler.

Hello, World! explained

▪ loads a header file containing function and class

definitions

▪ Loads a namespace called std.

▪ Namespaces are used to separate sections of code

for programmer convenience. To save typing we’ll

always use this line in this tutorial.

▪ cout is the object that writes to the stdout device, i.e. the console

window.

▪ It is part of the C++ standard library.

▪ Without the “using namespace std;” line this would have been called

as std::cout. It is defined in the iostream header file.

▪ << is the C++ insertion operator. It is used to pass characters from

the right to the object on the left.

▪ endl is the C++ newline character.

Header Files

▪ C++ (along with C) uses header files as to hold definitions for the compiler to use while

compiling.

▪ A source file (file.cpp) contains the code that is compiled into an object file (file.o).

▪ The header (file.h) is used to tell the compiler what to expect when it assembles the

program in the linking stage from the object files.

▪ Source files and header files can refer to any number of other header files.

▪ When compiling the linker connects all of the object (.o) files together into the

executable.

Make some changes

▪ Let’s put the message into some variables

of type string and print some numbers.

▪ Things to note:

▪ Strings can be concatenated with a + operator.

▪ No messing with null terminators or strcat() as in

C

▪ Some string notes:

▪ Access a string character by brackets or

function:

▪ msg[0] → “H” or msg.at(0) → “H”

▪ C++ strings are mutable – they can be

changed in place.

▪ Re-compile, run, and check the output.

#include <iostream>

using namespace std;

int main() {

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

A first C++ class: string

▪ string is not a basic type (more

on those later), it is a class.

▪ string hello creates an

instance of a string called hello.

▪ hello is an object. It is

initialized to contain the string

“Hello”.

▪ A class defines some data and a

set of functions (methods) that

operate on that data.

#include <iostream>

using namespace std;

int main() {

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

A first C++ class: string

▪ Let’s see what the string class

contains for functionality…

▪ https://cplusplus.com/reference/s

tring/string/

#include <iostream>

using namespace std;

int main() {

string hello = "Hello";

string world = "world!";

string msg = hello + " " +

world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

https://cplusplus.com/reference/string/string/

A first C++ class: string

▪ Tweak the code to print the number

of characters in the string, build, and

run it.

▪ size() is a public method, usable by

code that creates the object.

▪ The internal tracking of the size and

the storage itself is private, visible

only inside the string class source

code.

▪ cout prints integers

without any modification!

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello" ;

string world = "world!" ;

string msg = hello + " " + world ;

cout << msg << endl ;

msg[0] = 'h';

cout << msg << endl ;

cout << msg.size() << endl ;

return 0;

}

Break your code.

▪ Remove a semi-colon. Re-compile. What messages do you get from the

compiler?

▪ Fix that and break something else. Capitalize string → String

▪ C++ can have elaborate error messages when compiling. Experience is

the only way to learn to interpret them!

▪ Fix your code so it still compiles and then we’ll move on…

▪ C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and we’ll cover

more as we go along.

▪ Curly braces are used to denote a code block (like the main() function):

▪ Statements end with a semicolon:

▪ Comments are marked for a single line with a // or for multilines with a pair of /* and */ :

▪ Variables can be declared at any time in a code block.

Basic Syntax

void my_function() {

int a ;

a=1 ;

int b;

}

int a ;

a = 1 + 3 ;

// this is a comment.

/* everything in here

is a comment */

{ … some code… }

▪ Functions are sections of code that are called from other code. Functions always have a

return argument type, a function name, and then a list of arguments separated by

commas:

▪ A void type means the function does not return a value.

▪ Variables are declared with a type and a name:

int add(int x, int y) {

int z = x + y ;

return z ;

}

// No arguments? Still need ()

void my_function() {

/* do something...

but a void value means the

return statement can be skipped.*/

}

// Specify the type

int x = 100;

float y;

vector<string> vec ;

// Sometimes types can be

// inferred in C++11

auto z = x;

▪ A sampling of arithmetic operators:

▪ Arithmetic: + - * / % ++ --

▪ Logical: && (AND) ||(OR) !(NOT)

▪ Comparison: == > < >= <= !=

▪ Sometimes these can have special meanings beyond arithmetic, for

example the “+” is used to concatenate strings.

▪ What happens when a syntax error is made?
▪ The compiler will complain and refuse to compile the file.

▪ The error message usually directs you to the error but sometimes the error occurs before the

compiler discovers syntax errors so you hunt a little bit.

Built-in (aka primitive or intrinsic) Types

▪ “primitive” or “intrinsic” means these types are not objects.
▪ They have no methods or internal hidden data.

▪ Here are the most commonly used types.

▪ Note: The exact bit ranges here are platform and compiler dependent!

▪ Typical usage with PCs, Macs, Linux, etc. use these values

▪ Variations from this table are found in specialized applications like embedded system processors.

Name Name Value

char unsigned char 8-bit integer

short unsigned short 16-bit integer

int unsigned int 32-bit integer

long unsigned long 64-bit integer

bool true or false

Name Value

float 32-bit floating point

double 64-bit floating point

long long 128-bit integer

long double 128-bit floating point

http://www.cplusplus.com/doc/tutorial/variables/

http://www.cplusplus.com/doc/tutorial/variables/
http://www.cplusplus.com/doc/tutorial/variables/

Read-Only Types

▪ The const keyword can be combined with any type declaration to make

read-only variables.

▪ Assignment can happen during a function call.

▪ The compiler will stop with an error if a const variable has a new value

assigned to it in your code.

const float pi = 3.14 ;

const string w = "Const String" ;

Need to be sure of integer sizes?

▪ In the same spirit as using integer(kind=8) type notation in Fortran, there are type definitions that

exactly specify exactly the bits used. These were added in C++11.

▪ These can be useful if you are planning to port code across CPU architectures (ex. Intel 64-bit

CPUs to a 32-bit ARM on an embedded board) or when doing particular types of integer math.

▪ For a full list and description see: http://www.cplusplus.com/reference/cstdint/

Name Name Value

int8_t uint8_t 8-bit integer

int16_t uint16_t 16-bit integer

int32_t uint32_t 32-bit integer

int64_t uint64_t 64-bit integer

#include <cstdint>

http://www.cplusplus.com/reference/cstdint/

Reference and Pointer Variables

▪ Variable and object values are stored in particular locations in the computer’s memory.

▪ Reference and pointer variables store the memory location of other variables.

▪ Pointers are found in C. References are a C++ variation that makes pointers easier and safer to

use.

▪ More on this topic later in the tutorial.

string hello = "Hello";

string *hello_ptr = &hello;

string &hello_ref = hello;

The object hello

occupies some

computer memory.

A pointer to the hello object string. hello_ptr

is assigned the memory address of object

hello which is accessed with the “&” syntax.

hello_ref is a reference to a string. The hello_ref

variable is assigned the memory address of object hello

automatically.

▪ C++ is strongly typed. It will auto-convert a variable of one type to another where it can.

▪ Conversions that don’t change value work as expected:

▪ increasing precision (float → double) or integer → floating point of at least the same precision.

▪ Loss of precision usually works fine:

▪ 64-bit double precision → 32-bit single precision.

▪ But…be careful with this, if the larger precision value is too large the result might not be what you expect!

Type Casting

short x = 1 ;

int y = x ; // OK

string z = y ; // NO

▪ C++ allows for C-style type casting with the syntax: (new type) expression

▪ But when using C++ it’s best to stick with deliberate type casting using the 4 different

ways that are offered…

Type Casting

double x = 1.0 ;

int y = (int) x ;

float z = (float) (x / y) ;

Type Casting

▪ static_cast<new type>(expression)

▪ This is exactly equivalent to the C style cast.

▪ This identifies a cast at compile time.

▪ This makes it clear to another programmer that you really intended a cast that

reduces precision (ex. double → float) even if it would happen automatically.

▪ ~99% of all your casts in C++ will be of this type.

▪ dynamic_cast<new type>(expression)

▪ Special version where type casting is performed at runtime, only works on reference

or pointer type variables.

▪ Usually created automatically by the compiler where needed, occasionally used by

the programmer.

double d = 1234.56 ;

float f = static_cast<float>(d) ;

// same as

float g = (float) d ;

// same as, this is an implicit cast

float h = d ;

Type Casting – rarely used versions

▪ const_cast<new type>(expression)

▪ Variables labeled as const can’t have their value changed.

▪ const_cast lets the programmer remove or add const to reference or pointer type

variables.

▪ If you need to do this, you probably want to re-think your code…

▪ reinterpret_cast<new type>(expression)

▪ Takes the bits in the expression and re-uses them unconverted as a new type.

Also only works on reference or pointer type variables.

▪ Sometimes useful when reading or writing binary files or when dealing with

hardware devices like serial or USB ports.

“unsafe”: the

compiler will not

protect you here!

The programmer

must make sure

everything is

correct!

Danger!

Very old sci-fi reference

https://en.wikipedia.org/wiki/Robot_(Lost_in_Space)

float RectangleArea1(float L, float W) {

return L*W ;

}

float RectangleArea2(const float L, const float W) {

// L=2.0 ;

return L*W ;

}

float RectangleArea3(const float& L, const float& W) {

return L*W ;

}

void RectangleArea4(const float& L, const float& W,

float& area) {

area= L*W ;

}

Functions

and Overloads

▪ Open the code in the “FunctionExample”

directory
▪ Compile and run it!

▪ Open Functions.cpp in geany.

The function arguments L and W

are sent as type float.

Product is computed and returned

The return type is float.

g++ -c Functions.cpp

g++ -c FunctionExample.cpp

g++ -o Functions Functions.o FunctionExample.o

./Functions

Organization of FunctionExample

▪ Functions.cpp
▪ Code that implements 4 functions.

▪ Functions.h
▪ Header file that declares the 4 functions.

▪ FunctionExample.cpp
▪ Contains the “main” routine.

▪ Includes the Functions.h file so the 4 functions can be called.

▪ FunctionExample.cpp and Functions.cpp are compiled separately.
▪ The header file insures the code being generated and being called is correct.

▪ The FunctionExample.o and Functions.o object files are linked to make the executable.

▪ Let’s try gdb, the “Gnu Debugger”, and see how to step through this code line-by-line.

▪ Next time we’ll use a development environment (Eclipse) that will drastically simplify debugging.

