
Introduction to C
Day 2
Katia Bulekova

Research Computing Services

Control Flow: functions

2

Operations that might need to be repeated several times or a logically complete code
are organized as functions.

Benefits:
• improves readability of the code
• improves reusability
• helps debugging
• reduces the size of the code

Control Flow: functions

3

float dist(float x, float y) {

float dist;
dist = sqrt(x*x + y*y);

return dist;
}

Control Flow: functions

4

float dist(float x, float y) {

float d;
d = sqrt(x*x + y*y);

return d;
}

The declaration of the function should correspond to the value it returns

Control Flow: functions

5

float dist(float x, float y) {...}

int main() {
float a=3.0, b=4.0, c;

c = dist(a, b);
printf ("c = %f\n", c);

return 0;
}

The declaration of the function should happen before it is used!

Control Flow: functions

6

$ gcc –lm –o mydist bc_09_mydist.c

Compile:

Hands-on exercises:

Write your own function that calculates the average value of x and y.

Call this function from the main() and print the result.

Pointers

7

A pointer in C a variable whose value is the memory address of another
variable.

51 4

0 4 8 12

i

1024 1028 1032 1036

ip

. . .

int i = 51; // regular integer variable

int *ip = &i; // pointer to an integer variable

Pointers

8

int i; // regular integer variable

int *ip; // pointer to an integer variable

i = 51;

ip = &i; // get address of i and store it in ip

printf("address of i is %p\n", &i);

printf("value stored at the address %p is %d\n", ip, *ip);

Pointers

9

$ gcc –o pointer bc_10_pointer.c

$./pointer

Pointers

Notice:

int *ip;

printf("value stored at the address %p is %d\n", ip, *ip);

Here we use * to declare that ip is a pointer
to an integer value

Here we use * to get the value stored at the
address of ip

Pointers

Hands-on exercises:

Declare 3 variables: char, int and double and assign values to them.

For each variable assign a variable that points to it.

Using sizeof() function find the memory size that is required to
store each variable

11

Pointers

Hands-on exercises:

Declare int variable i and a pointer ip to it. Use ip variable to modify the
value stored in i – increase the value by 1.

12

Pointers – common mistakes

13

float x = 3;

float *p;

// p is a pointer (address) but x is not

p = x; // Error

// &x is address but *p is not

*p = &x; // Error

// both &x and p are addresses

p = &x; // Correct

// both x and *p are values

*p = x; // Correct

Pointers and arrays

14

The name of an array can be treated as a pointer and vice versa

float x[5] = { 1.0, 2.1, 3.2, 4.3, 5.4};

float *p = x; // p will point to x[0]

p = p + 2;

printf ("p points to %d\n", *p); // prints 3.2

So x[2] and *(p+2) refer to the same element

Pointers and arrays

15

$ gcc –o parrays bc_11_parrays.c

$./parrays

Compile and run:

Pointers and Strings

16

A C string is an array of characters
So, the name of the string variable is also a pointer:

char my_string[] = "Hello";

or

char my_string[] = {'H', 'e', 'l', 'l', 'o' , '\0’};

printf("third letter in the string is %c\n", *(my_string + 2));

Memory allocation

Suppose we do not know how many values we need to store in an array. We
can then first declare it as a pointer and allocate memory later.

malloc (size_in_bytes) returns a pointer to a memory region that
you can then assign to a variable of whatever type you like

To free the memory use free() function

17

Memory allocation

Suppose we do not know how many values we need to store in an
array. We can then first declare it as a pointer and allocate memory
later:

18

#include <stdlib.h>

float *x;

//allocate memory to store 10 elements

x = (float*) malloc (10 * sizeof(float));

// free memory

free(x);

Memory allocation

Hands-on exercises:

19

Use mem.c file

Declare int array with unknown size (pointer).

Using malloc() function allocate 100 elements to be stored in this array.

Using for loop fill array with integer values from 1 to 100.

Command line arguments

Input parameters to the program can be passed using command line:

20

$ my_program 100

int main (int argc, char **argv){

}

The number of arguments that were passed to the program and their
values can be accessed using argc and argv variables:

Command line arguments

argc – is equal to the number of arguments passed to the program.

The first argument is always the program name. So argc is always
greater or equal to 1.

21

int main (int argc, char **argv){

}

argv is an array of strings (hence **). Each string contains a value of an
argument.

argv[0] contains the name of the program

Command line arguments

To convert values stored in argv to integers or floating values, use
atoi() and atof() functions respectfully:

i = atoi(argv[1]);

or

x = atof (argv[2]);

22

Command line argument

Hands-on exercises:

23

$ gcc –o mem bc_13_args.c

Run passing various integer values to the program:

$./mem 20

Compile the program:

Putting it all together

• Let’s define a function that takes a value N, allocates an integer array,
fills it with values from 1 to N and returns a pointer to this array.

• Define another function mean() that takes array as an argument and
calculates mean (average) of this array.

• Save both functions in a file with a name mean_fun.c

• In the main.c file define main() function. This function will read the
command line and assign the input to N and then it will call first
function array_init() and then mean(). Print the result at the end.

24

Putting it all together

Hands-on exercises:

25

Compile the program and run passing various integer values to the
program:

$ gcc -c bc_14_mean_fun.c
$ gcc -c bc_14_ main.c
$ gcc -o mean bc_14_ main.o bc_14_ mean_fun.c

Automating the build process with GNU Make

26

#!/bin/bash

gcc -c hello.c
gcc hello.o -o hello

The manual build process we used above can become quite tedious for all but the smallest projects. There are
many ways that we might automate this process. The simplest would be to write a shell script that runs the
build commands each time we invoke it:

27

all: hello

hello: hello.o
gcc hello.o -o hello

hello.o: hello.c
gcc -c hello.c

clean:
rm hello hello.o

Automating the build process with GNU Make

Make is a mini-programming language unto itself. For the hello program, a Makefile might look like this:

28

Automating the build process with GNU Make

You can issue "make --help" to list the command-line options; or "man make" to display the man pages.

The command make looks for a file named Makefile or makefile in the same directory by default. Other file
names can be specified by the option -f:

make -f filename

29

Automating the build process with GNU Make

A Makefile consists of a set of rules.

A rule consists of 3 parts: a target, a list of prerequisites and a command:

target: prereq1 prereq2 ...
command

The target and pre-requisites are separated by a colon (:).

The command must be preceded by a tab (NOT spaces).

30

target: prereq1 prereq2 ...
command

Automating the build process with GNU Make

Make is a mini-programming language unto itself. For the hello program, a Makefile might look like this:

31

Automating the build process with GNU Make

all: hello

hello: hello.o

gcc hello.o -o hello

hello.o: hello.c

gcc -c hello.c

clean:

rm hello hello.o

Target

prerequisite Running make command without an argument
executes the target "all" in the Makefile.

rule

32

Make workflow

all: hello

hello: hello.o

gcc hello.o -o hello

hello.o: hello.c

gcc -c hello.c

clean:

rm hello hello.o

1. Find the default target, which is our executable file hello.
2. Check to see if hello is up-to-date. hello does not exist, so it

is out-of-date and will have to be built
3. Check to see if the prerequisite hello.o is up-to-date. hello.o

does not exist, so it is out-of-date and will have to be built.
4. The prerequisite hello.c is not a target, so there is nothing

left to check. The command gcc -c hello.c will be run to build
hello.o

5. Now hello.o is up to date, so make builds the next target
hello by running the command gcc hello.o -o hello

6. Done.

33

Make workflow

all: hello

hello: hello.o

gcc hello.o -o hello

hello.o: hello.c

gcc -c hello.c

clean:

rm hello hello.o

A target is considered out-of-date if:

1. it does not exist, or
2. it is older than any of the prerequisites.

34

Make workflow

all: hello

hello: hello.o

gcc hello.o -o hello

hello.o: hello.c

gcc -c hello.c

clean:

rm hello hello.o

Note that the command under the clean target is not executed by
make, because it is neither the first target nor a prerequisite of
any other target. To execute this target, we need to specify the
target name:

make clean

35

Make example

all: mean

mean: main.o mean_fun.o

gcc main.o mean_fun.o -o mean

main.o: main.c

gcc -c main.c

mean_fun.o: mean_fun.c

gcc -c mean_fun.c

clean:

rm mean *.o

Let's look at the example for our first multi-file program mean:

36

Make example

all: mean

mean: main.o mean_fun.o

@ gcc main.o mean_fun.o -o mean

main.o: main.c

@ gcc -c main.c

mean_fun.o: mean_fun.c

@ gcc -c mean_fun.c

clean:

@ rm mean *.o

By default, make prints on the screen all the commands that it executes. To suppress the print, add an @
before the commands, or turn on the silent mode with the option -s: make -s

37

Writing a good Makefile

CC=gcc

OBJ=main.o mean_fun.o

EXE=mean

all: $(EXE)

$(EXE): $(OBJ)

$(CC) main.o mean_fun.o -o mean

main.o: main.c

$(CC) -c main.c

mean_fun.o: mean_fun.c

$(CC) -c mean_fun.c

clean:

rm $(EXE) *.o

A Makefile could be very complicated in a practical program with many source
files. It is important to write a Makefile in good logic. The text in the
Makefile should be as simple and clear as possible.

38

Writing a good Makefile

CC=gcc

OBJ=main.o mean_fun.o

EXE=mean

all: $(EXE)

$(EXE): $(OBJ)

$(CC) $^ -o $@

main.o: main.c

$(CC) -c $<

mean_fun.o: mean_fun.c

$(CC) -c $<

clean:

rm $(EXE) *.o

Furthermore, we can upgrade the Makefile to a higher automatic level using the
so-called "automatic variables":

Here we have used the following automatic variables:

$@ --- the name of the current target
$^ --- the names of all the prerequisites
$< --- the name of the first prerequisite

39

Writing a good Makefile

CC=gcc

OBJ=main.o mean_fun.o

EXE=mean

all: $(EXE)

$(EXE): $(OBJ)

$(CC) $^ -o $@

%.o: %.c

$(CC) -c $<

clean:

rm $(EXE) *.o

Both main.o and mean_fun.o are built using the same command. We can simplify
the Makefile even further

40

Useful Resources

1. GNU Make Manual: https://www.gnu.org/software/make/manual/

2. GCC and Make: https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html#zz-2.

3. Writing Larger Programs

4. Makefile tutorial: https://makefiletutorial.com/

https://www.gnu.org/software/make/manual/
https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html#zz-2
https://users.cs.cf.ac.uk/Dave.Marshall/C/node35.html#SECTION003560000000000000000
https://makefiletutorial.com/

Thank you
Email: help@scc.bu.edu

Research Computing Services

