
Intermediate SCC Usage
Research Computing Services

Katia Bulekova

Learning Objectives

• Understanding Cluster Structure
o Buy-in vs. Shared nodes

o Hardware architecture

o Resources request

• Learning how to retrieve and understand information about past jobs

• How to run parallel Jobs on the SCC

• Running multiple jobs on the cluster
o Array jobs

o Executing multiple scripts within a single job

• Executing dependent jobs

2

Shared Computing Cluster

• Shared - transparent multi-user and multi-tasking environment

• Computing - heterogeneous environment:
• interactive jobs

• single processor and parallel jobs

• graphics job

• Cluster - a set of connected via a fast local area network computers; job
scheduler coordinates work loads on each node

3

Shared Computing Cluster

Rear View

Compute Nodes

Infiniband

Ethernet

4

1,054 nodes
~ 28,700 CPU cores
~ 485 GPUs

~ 14 PT

SCC buy-in resources

6

0 100 200 300 400 500 600 700

Shared

Buy-in

Compute Nodes

Shared Buy-in

• All buy-in nodes have a hard limit of 12 hours for non-member jobs.
• Setting time limit for a job larger than 12 hours automatically excludes all buy-in nodes

from the available resources

SCC resources

• Processors: Intel and AMD

• CPU Architecture: sandybridge, ivybridge, haswell, broadwell, knl, epyc,

 skylake, cascadelake, icelake, sapphirerapids

• Ethernet connection: 1 or 10 Gbps

• Infiniband: EDR, FDR, QDR, HDR (or none)

• GPUs: NVIDIA K40m, P100, V100, A100, A40, A6000, L40s etc. + GPUs for visualization

• Number of cores: 8,16, 20, 28, 32, 36, 48, 64, 96

• Memory (RAM): 128 GB – 1TB

• Scratch Disk: 244GB – 886GB

Technical Summary:
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

7

http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/
http://www.bu.edu/tech/support/research/computing-resources/tech-summary/

SCC: batch jobs

Script organization:

#!/bin/bash -l

#Time limit

#$ -l h_rt=12:00:00

#Project name

#$ -P krcs

#Send email-report at the end of the job

#$ -m e

#Job name

#$ -N myjob

#Load modules:

module load python/3.12.4

#Run the program

python myscript.py

Script interpreter

Scheduler Directives

Commands to execute

8

SCC: batch jobs

Script organization:

#!/bin/bash -l

#Load modules:

module load python/3.12.4

Script interpreter

Execute login shell
(for proper interpretation of the module commands)

9

SCC: batch jobs

Script organization:

10

#Time limit

#$ -l h_rt=12:00:00

Resource request

SCC Resources

All purpose nodes:

 can run single-processor jobs and parallel jobs (up to 720 hours)

Whole node queues (8, 16, 28, 32 and 36 cores):

 only jobs that request a whole node will run on them (up to 240 hours)

GPU nodes:

 only jobs requesting GPU(s) will run on these nodes (up to 48 hours)

MPI queues:

 only for jobs requesting multiple nodes (up to 120 hours)

VirtualGL nodes:

 for interactive graphics jobs (up to 48 hours)
11

Request resources: single node parallelization

An example of resource request for multiple cores (to run parallel codes):

#$ -pe omp 4

 Recommended values to select multiple CPU cores:

 4, 8, 16, 28, 32, 36 # shared nodes

 4, 8, 16, 20, 28, 32 # buy-in nodes

12

Request resources: multi-node parallelization

An example of resource request for an MPI job:

#$ -pe mpi_28_tasks_per_node 56

 3 MPI queues:

 two queues with 28-core nodes (896 total cores limit)

 64-core nodes (1024 total cores limit)

13

Request resources: GPU jobs

An example of resource request for a GPU job:

#$ -l gpus=1

 All shared GPU nodes have 2 or 4 GPUs per node

 Buy-in queues have 1, 2, 4, 5, 8, and 10 GPUs per node

 GPUs architecture: K40m, P100, V100, A100, A40, A6000, L40 (shared nodes)

 qgpus -v # displays information about current GPUs on the SCC

14

Request resources: GPU jobs

Example of resource request for a GPU job, with additional restrictions:

GPU capability (current selection: 3.5, 6.0, 7.0, 7.5, 8.0, 8.6, 8.9)

#$ -l gpus=1

#$ -l gpu_c=6.0 # request GPU with at least 6.0 compute capability

 #$ -l gpu_memory=40G

 # GPU type (see qgpus output for current selection)

#$ -l gpus=1

#$ -l gpu_type=P100 # request specific GPU type

15

Hardware Architecture

• Processors: Intel and AMD

• CPU Architecture: sandybridge, ivybridge, haswell, broadwell, knl, epyc

 skylake, cascadelake, icelake, sapphirerapids

16https://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/

There are 3 compilers available on the SCC: GNU (gcc/llvm), PGI and Intel

A program compiled with options that optimize performance for a newer CPU architecture may be unable to
run on older compute nodes.

#$ -l avx
#$ -l avx2

https://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/
https://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/
https://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/
https://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/
https://www.bu.edu/tech/support/research/software-and-programming/programming/compilers/

Resource request: Memory

17

#Time limit

#$ -l h_rt=12:00:00

#Memory request

#$ -pe omp 28

#$ -l mem_per_core=8GB

https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY

https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/#memory
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY
https://www.bu.edu/tech/support/research/system-usage/running-jobs/batch-script-examples/#MEMORY

SCC: Job Memory usage

Checking the status of a batch job

scc1 % qstat -u <userID>

List only running jobs

scc1 % qstat –u <userID> -s r

Get job information:

scc1 % qstat -j <jobID>

18

SCC: Job Memory usage

scc1 % qstat -j 596557

job ID

job_number: 596557
exec_file: job_scripts/596557
submission_time: Mon Sep 11 10:11:04 2017
owner: ktrn
. . .
sge_o_workdir: /projectnb/krcs/projects/
sge_o_host: scc4
account: sge
cwd: /projectnb/krcs/projects/chamongrp
. . .
hard resource_list: no_gpu=TRUE,h_rt=172800
soft resource_list: buyin=TRUE
env_list: PATH=/usr/java/default/jre/bin:/usr/java/default/bin
script_file: job.qsub
parallel environment: omp16 range: 16
project: krcs

usage 1: cpu=00:13:38, mem=813.90147 GBs, io=0.01024, vmem=1.013G, maxvmem=1.013G
scheduling info: (Collecting of scheduler job information is turned off)

19

SCC: Memory and cpu core usage

1. Login to the compute node

scc1 % ssh scc-ca1

2. Run top command

scc1 % top -u <userID>

Top command will give you a listing of the processes running as well as memory an CPU usage

3. Exit from the compute node

scc1 % exit

20

SCC: completed jobs report (qacct)

qacct - query the accounting system

scc1 % qacct -j 596557 query the job by ID

scc1 % qacct -j -d 3 -o ktrn query the job by the time of execution

number of days job owner

21

SCC: completed jobs report (qacct)

qname p100
hostname scc-c11.scc.bu.edu
group scv
owner ktrn
project krcs
jobname myjob
jobnumber 551947
qsub_time Wed Sep 6 20:08:56 2017
start_time Wed Sep 6 20:09:37 2017
end_time Wed Sep 6 23:32:29 2017
granted_pe NONE
slots 1
failed 0
exit_status 0
cpu 11232.780
mem 611514.460
io 14.138
iow 0.000
maxvmem 71.494G
arid undefined

22

SCC: Array jobs

An array job executes independent copy of the same job script. The number of tasks to be executed is set

using -t option to the qsub command, .i.e:

The script below will submit an array job consisting of 10 tasks, numbered from 1 to 10. The batch system

sets up SGE_TASK_ID environment variable which can be used inside the script to pass the task ID to the

program:

#!/bin/bash –l

#$ -P myproject

#$ -l h_rt=12:00:00

#$ -N myjob

#$ -t 1-10

module python3/3.10.12

python my_script.py $SGE_TASK_ID

23

SCC: Environment variables

24

SGE automatically sets several variables, and you can also leverage standard Linux environment
variables to control your job's execution.

SGE-Specific Variables

$JOB_ID: The unique ID assigned to your job by SGE. Essential for monitoring and interacting with a specific job.

$JOB_NAME: The name of your job, as specified with the -N option in qsub.

$NSLOTS: The number of slots (CPUs) allocated to your job across all hosts.

$SGE_TASK_ID: Task ID

General Linux Variables

$PATH: Defines the directories where the shell looks for executable commands.

$HOME: The user's home directory.

$TMPDIR: A temporary directory that can be used by jobs to write temporary files. Using this can improve performance by

reducing network I/O and prevent issues with shared storage.

SCC: Accessing Environment variables in code

import os

num_cores_requested = int(os.getenv('NSLOTS'))

25

Python:

num.cores <- as.numeric(Sys.getenv('NSLOTS'))

R:

num_cores= str2num(getenv('NSLOTS'))

MATLAB:

SCC: Running short scripts (Python example)

26

#!/bin/bash -l

module load python3/3.10.12

Run same program for different parameters many times:
for i in `seq 0 4`;
do
 python short.py $i outfile_${i}.txt
done

SCC: Running short scripts (R example)

27

#!/bin/bash -l

module load R/4.4.3

Run same program for different parameters many times:
for i in `seq 0 4`;
do
 Rscript short_r.R $i outfile_${i}.txt
done

SCC: Job dependency

Some jobs may be required to run in a specific order. For this application, the job dependency can be

controlled using "-hold_jid" option:

scc1 % qsub -N job1 script1

scc1 % qsub -N job2 -hold_jid job1 script2

scc1 % qsub -N job3 -hold_jid job2 script3

A job might need to wait until the remaining jobs in the group have completed (aka post-processing).

In this example, lastjob won’t start until job1, job2, and job3 have completed.

scc1% qsub -N job1 script1

scc1% qsub -N job2 script2

scc1% qsub -N job3 script3

scc % qsub -N lastJob -hold_jid "job*" script4

28https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend
https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#depend

SCC: Links

Research Computing website: http://www.bu.edu/tech/support/research/

RCS software: http://sccsvc.bu.edu/software/

RCS examples: http://rcs.bu.edu/examples/

RCS Tutorial Evaluation: http://scv.bu.edu/survey/tutorial_evaluation.html

Please contact us at help@scc.bu.edu if you have any problem or question

29

http://www.bu.edu/tech/support/research/
http://sccsvc.bu.edu/software/
http://rcs.bu.edu/examples/
http://scv.bu.edu/survey/tutorial_evaluation.html
mailto:help@scc.bu.edu

	Slide 1: Intermediate SCC Usage
	Slide 2: Learning Objectives
	Slide 3: Shared Computing Cluster
	Slide 4: Shared Computing Cluster
	Slide 5
	Slide 6: SCC buy-in resources
	Slide 7: SCC resources
	Slide 8: SCC: batch jobs
	Slide 9: SCC: batch jobs
	Slide 10: SCC: batch jobs
	Slide 11: SCC Resources
	Slide 12: Request resources: single node parallelization
	Slide 13: Request resources: multi-node parallelization
	Slide 14: Request resources: GPU jobs
	Slide 15: Request resources: GPU jobs
	Slide 16: Hardware Architecture
	Slide 17: Resource request: Memory
	Slide 18: SCC: Job Memory usage
	Slide 19: SCC: Job Memory usage
	Slide 20: SCC: Memory and cpu core usage
	Slide 21: SCC: completed jobs report (qacct)
	Slide 22: SCC: completed jobs report (qacct)
	Slide 23: SCC: Array jobs
	Slide 24: SCC: Environment variables
	Slide 25: SCC: Accessing Environment variables in code
	Slide 26: SCC: Running short scripts (Python example)
	Slide 27: SCC: Running short scripts (R example)
	Slide 28: SCC: Job dependency
	Slide 29: SCC: Links

