Version Control and

collaboration with
Git and Github

Katia Bulekova

Research Computing Services

Schedule

9:30-11:00

11:00 — 11:15 — coffee break
11:15-12:45

12:45 -13:15 — lunch

13:15 - 14:45

Challenges of working on a project

 Undo and Redo

* Tracking changes

* Working with others

e Sharing Changes

e Overlapping work by various people

| 1~ = | project
= U

Copy

Share Wiew

b cut 4 B x Lﬁ

Copy

w.| Copy path
aste Move

Delete Rename Mew

| Paste shortcut | o~ to~ - folder
Clipboard Organize
&« v » ThisPC » Documents » work » project
& Mame -
~ 3t Quick access .)
B Deskiop o pro_!ect.docx
@ project_v2.docx

‘ Downloads L5 project_v3.docx
|| Documents @5 project_v3_2-15-2016.docx
=/ Pictures M= project_v3_2-28-2016.docx

ComputeFest20 Vg project_v3_2-28-2016_reviewed.docx

ideas W5 preject_v3_2-28-2016_reviewed2 docx

Python g project_v3_2-28-2016_reviewed3.docx

work 0= project_v3_2-28-2016_reviewed3_final.docx

s project_v3_2-28-2016_reviewed3_final_v2.docx
@ OneDrive L5 project_v3_2-28-2016_reviewed3_final_v3.docx
~ [This PC
[Desktop
W
1litems 1item selected 348 KB

— O *
L'T\"JNEW item ~ \/] @Open < HHSelect all
T | Easy access - | Edit Select none
Properties
- £7) History DD Invert selection
Mew Open Select
w 0 Search project L

Type

Size

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

Microsoft Word D...

185 KB
M9 KE
34 KB
96 KB
73 KB
83 KB
T14KE
109 KB
260 KB
32 KB
81 KB

Research Computing Services

Motivations

* Roll-back functionality
* Recorded snapshots allow to undo mistakes and go to a working version

* Branching
* Allow to develop several features and fix problems at the same time

e Reproducibility
e Others can easily test your code and reproduce your results
* When a bug is found you can know precisely when this bug was introduced

What is usually stored in a git repository

* Software

* Scripts

* Documents

e Papers, manuscripts, books
e Configuration files

* Website sources

e Data (sometimes)

Git history

Development began in 2005 while working on Linux Kernel
The first stable version released in December 2005

Goals set but Linus Torvalds:
v’ Distributed system
v Applying updates should not take longer than 3 seconds
v Take Concurrent Version System as an example of what not to do
v Support distributed system workflow
v Include strong safeguards against corruption, both accidental and malicious

Word "git" - "unpleasant person" in British slang
The man page describes Git as "the stupid content tracker".

From README file of the source code: "- global information tracker": you're in a good mood,
and it actually works for you. Angels sing, and a light

suddenly fills the room.
- "g*dd*mn idiotic truckload of sh*t": when it breaks

Git main features

v’ Track all your changes
v" Work along with others

v" Share work with others

Git Terminology

Repository - container for snapshots and history
Remote - connection to another repository for example GitHub (like URL)
Commit -

* A snapshot, basic unit of history

* Full copy of a project

* Includes author, time, comments, pointer to the parent
Reference - a pointer to commit
Branch - a separate line of workflow
Merge - a commit that combines 2 lines of history (points to 2 parents)

nstalling Gi

4 Git - Downloading Pack= X

& Git Gui — O X

f

£

|
m]
X

Repositery Help

git-scm.com/do G O @ @ © 5]

2 : Create Mew Repository
O git

Clone Existing Repositony

Open Exsting Repository
About

Documentation

1 Downloading Git]

Downloads
Your download is starting...
You are downloading version 2.10.1 of Git for the Mac platform. This is the

Y most recent maintained build for this platform. It was released 3 months ago,
on 2016-10-14.

If your download hasn't started, click here to download manually.

Quit

ailable MINGWE: /c/Users/Katia
o Now What?

Now that you have downloaded Git, it's time to start using it.

Read the Book Download a GUI

Get Involved

Login to the SCC

scclbuedu - O x
Terminal Sessions View Xserver Tools Games Settings Macros Help
- k = B | 5 1 ', 2 s ~.
2 @ Bk 3 s B W B\ = A O X ©
Session Servers Tools Games Sessions View Split MultExec Tunneling Packages Settings Help ¥ server Exit Usern ame . t u t a #

ct... ™ oo B 3 kolsinik@s 7 jhomeimokb b N

Password:

v Saved sessions -L 0 g i n a s : -t u .t a 0 ~

B iboen tutal@sccl.bu.edu's password: _
i e P I # - is the number located on your computer
.‘}_scc4
»
2 Note:
* Username and password are case-sensitive
e password will not be displayed while you
are typing it

UNREGISTERED VERSION - Please support MobaXterm by subscribing to the professional edition here: http:/fmobaxterm.mobatek. net

Setting up git (~/.gitconfig)
module load git

git config --global user.name "Katia Bulekova"
git config --global user.email ktrn@bu.edu
git config --global core.editor "vim"
"emacs -nw"
"nano" (or gedit)

git config --1list [--global / --local]

Git : advanced configuration

e Usually in /etc directory

overrides
Global
e ~/ gitconfig

overrides

Local

e .git/config

Research Computing Services

12

Getting help

$ git help verb

—

Full manpage

$ man git-verb -

$ git verb -h Concise help

Example: $ git config -h

stash

Big Picture

remote
repository

|

{

working
space

v
)
92
—
QD
Q
>
(@]
QO
=
®
Q
—

[

(index)

local
repository

]

stash

git stash pop
git stash

<
<

working space

git add

<

»

<

git reset

Big Picture

() git commit
staging area >
(index) .

git checkout

r

.

~
remote repository
(GitHub, GitLab)
J

git pull
git push

~
J

. J

A

local
repository

15

Main workflow for version control

{

working > staging area . local
space “ (index) « repository

]

16

Creating a local repository

New directory/project git init dirname
Existing directory cd /path/to/dirname
git init

Cloning local repository git clone /path/to/repo

Cloning remote repository

git clone https://github.com/bu-rcs/newpkg.git

17

Git : explore a repository

koleinik@scc2:~/mypy

Fle Edit View 5Search Terminal Help
scc2 mypy % tree .git a
.git

I
| -- branches
| -- config
| -- description
| - - hooks
| | -- applypatch-msg.sample
| | -- commit-msg.sample
| | -- post-update.sample
| | -- pre-applypatch.sample
| | -- pre-commit.sample
| | -- pre-push.sample
| | -- pre-rebase.sample
| | -- prepare-commit-msg.sample
| "-- update.sample
|-- info
| "-- exclude
|-- objects
| |-- info
| "-- pack
T-- refs
| - - heads
"-- tags

9 directories, 13 files
N BOSTON
SCC2 mypy % I Research Computing Servis

Git : 4 statuses

untracked e File is not under control by git

u nmodified e Git knows about file, but it has not been modified

e Git knows about the file and it has been modified

Staged e File is ready to commit

Research Computing Services

Git : check the status

koleinik@scc2:~/mypy

File Edit View Search Terminal Help
scc2 mypy % git status -]
On branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)
SCC2 mypy %

BOSTON
Research Computing Services UNIVERSITY

workflow

index.ht
ml style.css

workflow

stage

index.ht

ml style.css git add index.html style.css

workflow

commit

—)

I
N

stage

index.ht - ~

ml style.css git add index.html style.css git push \ .
version 1

workflow

index.ht
ml style.css

Edit '

index.ht
ml style.css

ey
=

~—

version 1

24

workflow

I
N

index.ht

A\ 4
mi style.css \
version 1

Edit

stage

Ir:(ljex-htstyle.css git add index.html style.css

workflow

index.ht
mi style.css

Edit

stage

Ir:(ljex-htstyle.css git add index.html style.css

commit

—

-

———
I
I
—

Eul

~—

version 1

.E

AN
=

version 2

Main workflow for version control

working space 1 . staging area 2 . local
(index) repository

git add filel [file2 file3 ..]
git add .

git commit -m "commit message"

git commit

Main workflow for version control

My Project README.md
#i# Author: Katia

Boston University

28

Main workflow for version control

working 1 . staging area
space (index)

git add README.md

29

Main workflow for version control

working 1 . staging area 2 . local
space (index) repository

git add README.md

git commit -m "Added a new README file"

30

Git : view the history of commits

koleinik@scc2:~/mypy

File Edit View Search Terminal Help

scc2 mypy % git log B
Author: Katia Oleinik <koleinik@bu.edu> SHA-1 key (Secure Hash Algorithm 1)
Date: Sun Jan 22 16:17:50 2017 -0500

Added printing time and date to hello.py
Created a new README file with the directions how to execute the program

Author: Katia Oleinik <koleinik@bu.edu>
Date: Sun Jan 22 15:46:26 2017 -0500

Initial version of hello.py code
SCC2 mypy %

=

Note: Git uses SHA-1 only to produce a unique hash tag

Research Computing Services 31

Git : view log with a graph

koleinik@scc2:~/mypy

Fle Edit View Search Terminal Help

scc2 mypy % git log --graph e
*

| Author: Katia Oleinik <koleinik@bu.edu>
| Date: Sun Jan 22 16:53:24 2017 -0500

Print home directory path

Author: Katia Oleinik <koleinik@bu.edu>
Date: Sun Jan 22 16:17:50 2017 -0500

Added printing time and date to hello.py
Created a new README file with the directions how to execute the program

Author: Katia Oleinik <koleinik@bu.edu>
Date: Sun Jan 22 16:13:19 2017 -0500

Added printing time in hello.py
Created a new README file

——— e S ————— — ¥ — — —

Author: Katia Oleinik <koleinik@bu.edu>
Date: Sun Jan 22 15:46:26 2017 -0500

Initial version of hello.py code
scc2 mypy % |j

Research Computing Services 32

Git : one line log

koleinik@scc2:~/mypy

Fle Edit View Search Terminal Help

scc2 mypy % git log --graph --oneline

* Print home directory path

* Added printing time and date to hello.py Created a new README fi
le with the directions how to execute the program

* Added printing time in hello.py Created a new README file

* Initial version of hello.py code

scc2 mypy % |

33

.gitignore file

can list file names and patterns
patterns apply to all subdirectories, while file names - to the current directory
each sub-directory can contain its own .gitignore file

gitignore file(s) should be committed

34

deleting and renaming files

To delete file using Git, execute :
git rm filename

git commit -m 'delete filename'

35

deleting and renaming files

If file was deleted using Linux rm command, it has to be added to the staging area and
then committed :

rm filename

git add filename
git commit -m 'deleted filename'

36

deleting and renaming files

Similarly, you can rename file using Git :
git mv filel file2

Or using Linux mv command and adding both files to the staging area

mv filel file2
git add filel fileZ2

Do not forget to commit your change:
git commit -m 'rename filel into file2'

37

Submitting work to remote

GitHub, GitLab, Bitbucket, etc.

Research Computing Services

Login to the account

O

Sign in to GitHub

Username or email address

Fassword Forgot password?

Mew to GitHub? Create an account.

Research Computing Services

Start a new project

Learn Git and GitHub without any code!

Using the Hello World guide, you'll create a repository, start a branch,
write comments, and open a pull request.

= — /
Read the guide Start a project

Create a new repository

A repository contains all the files for your project, including the revision histony.

Owner Repository name

A katgit~ / mypy v

Great repository names are short and memaorable. Meed inspiration? How about bookish-pancake.

Description (optional)

Tutorial projecﬂ

- Public
Anyone can see this repository. You choose who can commit.

Private
You choose wheo can see and commit to this repository,

[l Initialize this repository with a README

This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add .gitignore: None = Add a license: None =

Create repository BC)STON
Researcnh Computl g S€ vices UNIVERSITY

Connect your local repo to the remote

katgit / mypy @ Unwatch> 1 &Star 0

<> Code ssues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Quick setup — if you've done this kind of thing before
[#]Setupin Desktop or | HTTPS | S5H | https://github.com/katgit/mypy.git

We recommend every repository include a README, LICEMSE, and .gitignore,

...Or create a new repository on the command line

echo "# mypy" »>> README.md

git init

git add README.md

git commit -m “"first commit™

git remote add origin https://github.com/katgit/mypy.git
git push -u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/katgit/mypy.git
git push -u origin master

BOSTON

Research Computing Services UNIVERSITY

Remote repository

To get your local repository connected with the GitHub:

git remote add origin https://github.com/katgit/myproject.git

git branch -M main

git push -u origin main

43

https://github.com/katgit/myproject.git

View remote github repositories

O

Katia

katgit

Add a bio

4% Boston University

*) Boston

Organizations

. (J
Pull requests Issues Gist a +- ‘v

Overview Repositories 7 Stars 0 Followers 1 Following O

Type: All = Language: All =

mypy

Tutorial project

® Python Updated 3 minutes ago

GPU-projects
GFU projects

Updated on Dec 7, 2015

planets

Planets

Updated on Dec 7, 2015

Research Computing Services

44

View remote github repositories

o This repaository Pull requests Issues Gist h,.' +- &~
katgit / mypy @ Unwatch> 1 %Star 0 YFork 0
£y Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings
Tutorial project Edit
D 10 commits ¥ 1 branch T 0 releases 22 1 contributor
Branch: master « New pull request Create new file = Upload files = Find file Clone lownload

A katgit Add gitignore file

E) .gitignore Add .gitignore file

E] README Renamed README.txt file back to README
E) hello.py Added printing time and date to hello.py
README

#To execute the program, type:
python hello.py

Latest commit 6163831 24 minutes ago

Research Computing Services

24 minutes ago
an hour ago

5 hours ago

45

GitHub 2FA

GitHub requires two-factor authentication (2FA)

See https://docs.github.com/en/authentication/securing-your-account-with-two-
factor-authentication-2fa/configuring-two-factor-authentication

Create a personal access token: https://docs.github.com/en/authentication /keeping-
your-account-and-data-secure/creating-a-personal-access-token

46

https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

GitHub 2FA on the SCC

Login to GitHub and in the right upper corner click the arrow and select "Settings’
On the left Sidebar select "Developer settings” -> "Personal access tokens”
Click "Generate new token" button. In the "Note" field give the token a description
For permissions, select "repo”
Leave the page with the GitHub personal access token open
On the SCC execute:

git config --global credential.helper store
7. Create a commit in any of your current SCC repositories and then push this commit
to GitHub. You will be asked to enter your username and then your password. For the
password copy your “personal access token” from the GitHub webpage.

N Ul W

https://www.bu.edu/tech/support/research/system-usage/using-scc/access-security/using-scc-with-github-2fa/

47

https://www.bu.edu/tech/support/research/system-usage/using-scc/access-security/using-scc-with-github-2fa/

Remote repository

1. To update remote repository with your changes
git push -u origin master mailn

3. To update your local repository with the changes in the remote:
git pull origin main

48

Exploring the differences/changes

git diff git diff --cached
working space) . staging area) X local
(index) repository

| |

git diff HEAD

git diff ©7ceeseb

49

Remove files from staging area

Remove a single file from staging area

git reset HEAD -- /path/to/file

Unstage all files
git reset

50

Review the history

git log # show the List of commits
git log -3 # show the List of the last 3 commits
git show shal # show information about specific commit

There are many options (can be combined):
git log --graph

git log --oneline

git log --stat

git log -p

51

Alias for git log

non-colored version
git log --graph --pretty=format:'%h%Creset -%d%Creset %s (%cr) <%an>%Creset' --abbrev-commit

#colored version
'%C(red)%h%C(reset) -%C(yellow)%d%C(reset) %s %C(green)(%cr) %C(bold blue)<%an>%C(reset)’

git log --graph --abbrev-commit --decorate --format=format:'%C(bold blue)%h%C(reset) - %C(bold
cyan)%aD%C(reset) %C(bold green) (%ar)%C(reset)%C(bold yellow)%d%C(reset)%n""
%C(white)%s%C(reset) %C(dim white)- %an%C(reset)' --all

create alias
git config --global alias.lg "log --all --decorate --oneline --graph”

52

Filtering logs

#Search commits with specific file(s) modified
git log -- filel file2

#Filter by date
git log --after="2019-1-1" --before="2019-3-24"

#Filter by author
git log --author="Katia\|Brian"

#Search commit messages
git log --grep="delete"

53

View file source in a commit

git show HEAD:filename # source 1in the last commit
git show 0721696: filename # source 1in a specific commit

git annotate filename # show who made changes to a file

54

View file source in a commit

git show HEAD:filename # source 1in the last commit
git show 0721696: filename # source 1in a specific commit

git annotate filename # show who made changes to a file

55

Travelling in time

undo staging
git reset
git reset -- filename

{working space J < [staging area J [Iocil]
(index) repository

|

discard changes
git checkout HEAD
git checkout -- filename

56

Travelling in time

| e5678 .
i i \
d4567 \l git checkout c3456

) _ /

working space staging area " 03456 | ¥

[| | seangwes | (cases | <eaa

 b2345
al234

master branch

57

Travelling in time

working space staging area e5678 | Head
[| | seangues | (esore” G
d4567) git checkout master
a2) /
c3456 /
| b2345
- al234

master branch

58

Collaboration

In the first directory (repol/myproject) add a few file and make a commit.

cd /path/to/repol

Make an initial commit:;

git add .
git commit -m "Initial commit"”

59

Collaboration

To differentiate between 2 repositories, let’'s change a local user-name
git config --local user.name "Some Alias”

60

Collaboration

In repo2 modify a file
git add myfile.txt
git commit -m "modified myfile"

Update Git Hub repository
git push origin main

In repol.:
git pull origin main

61

Resolving Conflicts

In repol further modify myfile.txt and then commit it
git add myfile.txt

git commit -m "added project flag to myfile"

Update Git Hub repository
git push origin main

62

Resolving Conflicts

In repo2 modify example.py file and then commit it
git add myfile 2.txt

git commit -m "added some modufucations to myfile2"

Now try to push the changes to the GitHub repo:
git push origin main

I [rejected] main -> main (fetch first)
error: failed to push some refs to 'https://github.com/katgit/myproject.git'

hint:
hint:
hint:
hint:
hint:

Updates were rejected because the remote contains work that you do

not have locally. This is usually caused by another repository pushing
to the same ref. You may want to first integrate the remote changes
(e.g., 'git pull ...'"') before pushing again.

See the 'Note about fast-forwards' in 'git push --help' for details.

63

Resolving Conflicts

In the repo where you got this errors (repo2) pull the updates from GitHub:
git pull origin main

If 2 different files were modified, git will resolve the conflict and will open an editor
to record a commit message

Update Git Hub repository
git push origin main

64

(o) -
{ ~N
W \
f Y
(
¢
) e
(C
\f N\ /L
O L b |« dev
\f N\
a

main

Branch

Git allows and encourages you to have
multiple local branches that can be
entirely independent of each other.

65

main

Branch

Check all existing branches
git branch

or
git branch --1list

66

Branch

Create a new branch "dev"
git branch dev

b | / Check existing branches

J +7 dev git branch --1list

main Note: Creating a new branch does not make it current!

67

main

<« ~ dev

Branch

Switch to a new "dev" branch
git checkout dev

Check existing branches
git branch --1list

68

Branch Checkout

4N Use checkout verb to switch between
e , 1‘(’ branches, i.e:
© git checkout <branch>

Each branch can be modified

0 iIndependently

main

69

Merging Branches

AN
\C \
' f
’\ d \ First checkout to the "receiving" branch:
e)] git checkout main
1 c g
hY g // ‘ Perform merge with the other branch
A) * dev git merge dev
N,
a

main

70

main

Rebase

main

71

Rebase

First checkout to the “development”
branch:
git checkout dev

\W. Perform rebase
git rebase main

Merging 2 branches

a | git checkout main

git merge dev
main

72

main

Rebase vs. Merge

N\

W \

f
[
X
) e
(C
N o)

b
Tt <7 dev
N

a

main

73

Rebase vs. Merge

Do not rebase commits that exist outside your repository and people
may have based work on them!

The way to get the best of both worlds is to rebase local changes you've
made but haven’t shared yet before you push them in order to clean up your
story, but never rebase anything you've pushed somewhere.

74

Pushing Branches to Remote

To push a branch to a remote repository
git push origin dev

List all remote repositories
git branch -1 -r

(In repo2) Get a particular branch from remote
git fetch origin dev

Get all branches from remote
git fetch origin

git branch -1 -r

75

Git tools: Stashing

When you need to switch between the branches, but are not ready to push
the changes you can use stashing area:

push changes to the stashing area
git stash

list stashes
git stash list

Now you can switch branches and do other work.

76

Git tools: Stashing

Once you are back to your master branch and are ready to continue your
work you can pull stashed files back:

pull stashed file into your working area
git stash apply

77

GitPull Requests

Pull requests are a feature that makes it easier for developers to collaborate
with large open-source projects.

When you create a pull request, you are requesting that the manager of the
repository pulls a branch from your repository into their repository.

78

Git Pull Requests

1. Create a fork of the repository in your local GitHub
account

2. Clone this repository on your local machine
3. Create a branch and make a change
4. Make a pull request (from her own account)

5. Repository manager (and his team) reviews the request and
merges in into official repository

79

Apendix

Git help

scc2 ~ % git help

usage: git [--version] [--help] [-C <path>] [-c name=value]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
<command> [<args>]

These are common Git commands used in various situations:
start a working area (see also: git help tutorial)
clone Clone a repository into a new directory

init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)

add Add file contents to the index

mv Move or rename a file, a directory, or a symlink
reset Reset current HEAD to the specified state

rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)

bisect Use binary search to find the commit that introduced a bug
grep Print lines matching a pattern

log Show commit logs

show Show various types of objects

status Show the working tree status

Research Computing Services

81

Git help

File Edit View Search Terminal Help

scc2 ~ % git config --helpf}

koleinik@scc2:~

koleinik@scc2:~

Fle Edit View Search Terminal Help

GIT-CONFIG(1) Git Manual GIT-CONFIG(1) n
NAME
git-config - Get and set repository or global options
SYNOPSIS
git config [<file-option>] [type] [-z]|--null] name [value [value regex]]
git config [<file-option>] [type] --add name value
gqit config [<file-option>] [type] --replace-all name value [value regex]
qit config [<file-option>] [type] [-z]|--null] --get name [value regex]
git config [<file-option>] [type] [-z]|--null] --get-all name [value regex]
git config [<file-option>] [type] [-z]|--null] [--name-only] --get-regexp name_regex [value rege
X]
git config [<file-option=>] [type] [-z]|--null] --get-urlmatch name URL
git config [<file-option>] --unset name [value regex]
git config [<file-option>] --unset-all name [value regex]
git config [<file-option>] --rename-section old name new name
git config [<file-option>] --remove-section name
git config [<file-option>] [-z]|--null] [--name-only] -1 | --list
git config [<file-option>] --get-color name [default]
git config [<file-option>] --get-colorbool name [stdout-is-tty]
git config [<file-option>] -e | --edit
DESCRIPTION

You can query/set/replace/unset options with this command. The name is actually the

section and the key separated by a dot, and the value ﬁé%&agﬁ1f%ﬁﬁg%ﬂﬂﬁgServkes

Git resources

Git official manual:
https://git-scm.com/documentation

Easy online tutorial by GitHub:
https://try.github.io

Git Immersion (popular Git tutorial):
http://gitimmersion.com/

Git docs on many languages:
http://www-cs-students.stanford.edu/~blynn/gitmagic/

Research Computing Services 83

https://git-scm.com/documentation
https://try.github.io/
http://gitimmersion.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/

Git GUI Clients

. Sourcetree: https://www.sourcetreeapp.com/

. GitHub Desktop: https://desktop.github.com/

. Others: https://git-scm.com/downloads/guis

84

https://www.sourcetreeapp.com/
https://desktop.github.com/
https://git-scm.com/downloads/guis

