
Version Control and
collaboration with

Git and Github

Katia Bulekova

Research Computing Services

Schedule

9:30 – 11:00

11:00 – 11:15 – coffee break

11:15 – 12:45

12:45 – 13:15 – lunch

13:15 – 14:45

26/6/2022

Challenges of working on a project

• Undo and Redo
• Tracking changes
• Working with others
• Sharing Changes
• Overlapping work by various people

Research Computing Services 3

Motivations

• Roll-back functionality

• Recorded snapshots allow to undo mistakes and go to a working version

• Branching

• Allow to develop several features and fix problems at the same time

• Reproducibility

• Others can easily test your code and reproduce your results

• When a bug is found you can know precisely when this bug was introduced

4Research Computing Services

What is usually stored in a git repository

• Software

• Scripts

• Documents

• Papers, manuscripts, books

• Configuration files

• Website sources

• Data (sometimes)

5

Git history

Development began in 2005 while working on Linux Kernel
The first stable version released in December 2005

Goals set but Linus Torvalds:
✓ Distributed system
✓ Applying updates should not take longer than 3 seconds
✓ Take Concurrent Version System as an example of what not to do
✓ Support distributed system workflow
✓ Include strong safeguards against corruption, both accidental and malicious

Word "git" - "unpleasant person" in British slang

The man page describes Git as "the stupid content tracker".

From README file of the source code: "- global information tracker": you're in a good mood,

and it actually works for you. Angels sing, and a light

suddenly fills the room.

- "g*dd*mn idiotic truckload of sh*t": when it breaks

Research Computing Services 6

Git main features

✓ Track all your changes

✓ Work along with others

✓ Share work with others

Research Computing Services 7

Git Terminology
Repository - container for snapshots and history
Remote - connection to another repository for example GitHub (like URL)
Commit -

• A snapshot, basic unit of history
• Full copy of a project
• Includes author, time, comments, pointer to the parent

Reference - a pointer to commit
Branch - a separate line of workflow
Merge - a commit that combines 2 lines of history (points to 2 parents)

Research Computing Services 8

Installing Git

Research Computing Services 9

Login to the SCC

Username: tuta#
Password:

- is the number located on your computer

Note:
• Username and password are case-sensitive
• password will not be displayed while you

are typing it

Research Computing Services 10

Setting up git (~/.gitconfig)

$ module load git

$ git config --global user.name "Katia Bulekova"

$ git config --global user.email ktrn@bu.edu

$ git config --global core.editor "vim"

"emacs -nw"

"nano" (or gedit)

$ git config --list [--global / --local]

11
Research Computing Services

Git : advanced configuration

System

• Usually in /etc directory

Global

• ~/.gitconfig

Local

• .git/config

overrides

overrides

Research Computing Services 12

Getting help

$ git help verb

Full manpage

$ man git-verb

$ git verb -h Concise help

Example: $ git config -h
13

Big Picture

14

stash

working

space
staging area

(index)

local

repository

remote

repository

15

stash

working space staging area
(index)

local
repository

remote repository
(GitHub, GitLab)

git add git commit

g
i
t

p
u
s
h

g
i
t

p
u
l
l

git checkout

git reset

g
i
t

s
t
a
s
h

g
i
t

s
t
a
s
h

p
o
p

Big Picture

Main workflow for version control

16

stash

working

space
staging area

(index)

local

repository

remote

repository

Creating a local repository

― New directory/project git init dirname

― Existing directory cd /path/to/dirname

git init

― Cloning local repository git clone /path/to/repo

― Cloning remote repository

git clone https://github.com/bu-rcs/newpkg.git

17

Git : explore a repository

Research Computing Services 18

Git : 4 statuses

• File is not under control by gituntracked

• Git knows about file, but it has not been modifiedunmodified

• Git knows about the file and it has been modifiedmodified

• File is ready to commitStaged

Research Computing Services 19

Git : check the status

Research Computing Services 20

workflow

21

index.ht
ml style.css

workflow

22

index.ht
ml style.css git add index.html style.css

stage

workflow

23

index.ht
ml style.css

version 1
git add index.html style.css git push

stage
commit

workflow

24

index.ht
ml style.css

version 1

Edit

index.ht
ml style.css

workflow

25

index.ht
ml style.css

version 1

Edit

index.ht
ml style.css

stage

git add index.html style.css

workflow

26

index.ht
ml style.css

version 1

Edit

index.ht
ml style.css

git push
version 2

stage commit

git add index.html style.css

Main workflow for version control

27

working space staging area
(index)

local
repository

git add file1 [file2 file3 …]

git commit -m "commit message"

1 2

1

2

git add .

git commit

Main workflow for version control

28

README.md# My Project

Author: Katia

Boston University

Main workflow for version control

29

working

space
staging area

(index)

git add README.md

1

1

Main workflow for version control

30

working

space
staging area

(index)

local

repository

git add README.md

git commit -m "Added a new README file"

1 2

1

2

Git : view the history of commits

SHA-1 key (Secure Hash Algorithm 1)

Note: Git uses SHA-1 only to produce a unique hash tag

Research Computing Services 31

Git : view log with a graph

Research Computing Services 32

Git : one line log

Research Computing Services 33

.gitignore file

34

― can list file names and patterns

― patterns apply to all subdirectories, while file names - to the current directory

― each sub-directory can contain its own .gitignore file

― .gitignore file(s) should be committed

deleting and renaming files

35

To delete file using Git, execute :

git rm filename

git commit -m 'delete filename'

deleting and renaming files

36

If file was deleted using Linux rm command, it has to be added to the staging area and
then committed :

rm filename

git add filename

git commit -m 'deleted filename'

deleting and renaming files

37

Similarly, you can rename file using Git :

git mv file1 file2

Or using Linux mv command and adding both files to the staging area

mv file1 file2

git add file1 file2

Do not forget to commit your change:

git commit -m 'rename file1 into file2'

Submitting work to remote
GitHub, GitLab, Bitbucket, etc.

Research Computing Services 39

Login to the account

Research Computing Services 40

Start a new project

Research Computing Services 41

Connect your local repo to the remote

Research Computing Services 42

Remote repository

43

To get your local repository connected with the GitHub:

git remote add origin https://github.com/katgit/myproject.git

git branch –M main

git push -u origin main

https://github.com/katgit/myproject.git

View remote github repositories

Research Computing Services 44

View remote github repositories

Research Computing Services 45

GitHub 2FA

46

GitHub requires two-factor authentication (2FA)

See https://docs.github.com/en/authentication/securing-your-account-with-two-
factor-authentication-2fa/configuring-two-factor-authentication

Create a personal access token: https://docs.github.com/en/authentication/keeping-
your-account-and-data-secure/creating-a-personal-access-token

https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

GitHub 2FA on the SCC

47

1. Login to GitHub and in the right upper corner click the arrow and select "Settings"
2. On the left Sidebar select "Developer settings" -> "Personal access tokens"
3. Click "Generate new token" button. In the "Note" field give the token a description
4. For permissions, select "repo"
5. Leave the page with the GitHub personal access token open
6. On the SCC execute:

git config --global credential.helper store
7. Create a commit in any of your current SCC repositories and then push this commit
to GitHub. You will be asked to enter your username and then your password. For the
password copy your “personal access token” from the GitHub webpage.

https://www.bu.edu/tech/support/research/system-usage/using-scc/access-security/using-scc-with-github-2fa/

https://www.bu.edu/tech/support/research/system-usage/using-scc/access-security/using-scc-with-github-2fa/

Remote repository

48

1. To update remote repository with your changes
git push -u origin master main

3. To update your local repository with the changes in the remote:
git pull origin main

Exploring the differences/changes

49

working space staging area

(index)

local

repository

git diff git diff --cached

git diff HEAD

git diff 07c0080b

Remove files from staging area

50

Remove a single file from staging area

git reset HEAD -- /path/to/file

Unstage all files

git reset

Review the history

51

git log # show the list of commits
git log -3 # show the list of the last 3 commits

git show sha1 # show information about specific commit

There are many options (can be combined):
git log --graph
git log --oneline
git log --stat
git log -p

Alias for git log

non-colored version

git log --graph --pretty=format:'%h%Creset -%d%Creset %s (%cr) <%an>%Creset' --abbrev-commit

#colored version

'%C(red)%h%C(reset) -%C(yellow)%d%C(reset) %s %C(green)(%cr) %C(bold blue)<%an>%C(reset)'

git log --graph --abbrev-commit --decorate --format=format:'%C(bold blue)%h%C(reset) - %C(bold
cyan)%aD%C(reset) %C(bold green)(%ar)%C(reset)%C(bold yellow)%d%C(reset)%n''
%C(white)%s%C(reset) %C(dim white)- %an%C(reset)' --all

create alias

git config --global alias.lg "log --all --decorate --oneline --graph"

52

Filtering logs

#Search commits with specific file(s) modified

git log -- file1 file2

#Filter by date

git log --after="2019-1-1" --before="2019-3-24"

#Filter by author

git log --author="Katia\|Brian"

#Search commit messages

git log --grep="delete"

53

View file source in a commit

54

git show HEAD:filename # source in the last commit

git show 0721696:filename # source in a specific commit

git annotate filename # show who made changes to a file

View file source in a commit

55

git show HEAD:filename # source in the last commit

git show 0721696:filename # source in a specific commit

git annotate filename # show who made changes to a file

Travelling in time

56

working space staging area

(index)

local

repository

undo staging
git reset

git reset -- filename

discard changes
git checkout HEAD

git checkout -- filename

Travelling in time

57

working space staging area

(index)
e5678

git checkout c3456d4567

c3456

b2345

a1234

master branch

Head

Head
working space staging area

(index)

Travelling in time

58

e5678

git checkout masterd4567

c3456

b2345

a1234

master branch

Head

Head
working space staging area

(index)

Collaboration

59

In the first directory (repo1/myproject) add a few file and make a commit.

cd /path/to/repo1

Make an initial commit:

git add .
git commit -m "Initial commit"

Collaboration

60

To differentiate between 2 repositories, let’s change a local user-name
git config --local user.name "Some Alias"

Collaboration

61

In repo2 modify a file
git add myfile.txt
git commit –m "modified myfile"

Update Git Hub repository

git push origin main

In repo1:

git pull origin main

Resolving Conflicts

62

In repo1 further modify myfile.txt and then commit it
git add myfile.txt
git commit –m "added project flag to myfile"

Update Git Hub repository

git push origin main

Resolving Conflicts

63

In repo2 modify example.py file and then commit it
git add myfile_2.txt
git commit –m "added some modufucations to myfile2"

Now try to push the changes to the GitHub repo:
git push origin main
! [rejected] main -> main (fetch first)
error: failed to push some refs to 'https://github.com/katgit/myproject.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Resolving Conflicts

64

In the repo where you got this errors (repo2) pull the updates from GitHub:

git pull origin main

If 2 different files were modified, git will resolve the conflict and will open an editor

to record a commit message

Update Git Hub repository

git push origin main

Branch

65

b

a

c
e

d

f

g

main

dev

Git allows and encourages you to have

multiple local branches that can be

entirely independent of each other.

Branch

66

b

a

c
e

d

f

g

main

dev

Check all existing branches
git branch

or
git branch --list

Branch

67

Create a new branch "dev"
git branch dev

Check existing branches
git branch --list

Note: Creating a new branch does not make it current!

b

a

c
e

d

f

g

main

dev

Branch

68

Switch to a new "dev" branch
git checkout dev

Check existing branches
git branch --list

b

a

c
e

d

f

g

main

dev

Branch Checkout

69

Use checkout verb to switch between

branches, i.e:
git checkout <branch>

Each branch can be modified

independently

b

a

c
e

d

f

g

main

dev

Merging Branches

70

b

a

c
e

d

f

g

main

dev

First checkout to the "receiving" branch:
git checkout main

Perform merge with the other branch
git merge dev

Rebase

71

b

a

c
e

d

f

main

dev
b

a

c
e

d

f

main

dev

c'

d'

Rebase

72

b

a

c
e

d

f

main

dev

First checkout to the “development"

branch:
git checkout dev

Perform rebase
git rebase main

Merging 2 branches
git checkout main
git merge dev

Rebase vs. Merge

73

b

a

c
e

d

f

main

dev

c'

d'

b

a

c
e

d

f

g

main

dev

Rebase vs. Merge

74

Do not rebase commits that exist outside your repository and people

may have based work on them!

The way to get the best of both worlds is to rebase local changes you’ve

made but haven’t shared yet before you push them in order to clean up your

story, but never rebase anything you’ve pushed somewhere.

Pushing Branches to Remote

75

To push a branch to a remote repository

git push origin dev

List all remote repositories

git branch –l -r

(In repo2) Get a particular branch from remote
git fetch origin dev

Get all branches from remote
git fetch origin

git branch –l -r

Git tools: Stashing

76

When you need to switch between the branches, but are not ready to push

the changes you can use stashing area:

push changes to the stashing area
git stash

list stashes

git stash list

Now you can switch branches and do other work.

Git tools: Stashing

77

Once you are back to your master branch and are ready to continue your

work you can pull stashed files back:

pull stashed file into your working area
git stash apply

GitPull Requests

78

Pull requests are a feature that makes it easier for developers to collaborate

with large open-source projects.

When you create a pull request, you are requesting that the manager of the

repository pulls a branch from your repository into their repository.

Git Pull Requests

79

1. Create a fork of the repository in your local GitHub
account

2. Clone this repository on your local machine

3. Create a branch and make a change

4. Make a pull request (from her own account)

5. Repository manager (and his team) reviews the request and
merges in into official repository

Apendix

Research Computing Services 80

Git help

Research Computing Services 81

Git help

Research Computing Services 82

Git resources

Git official manual:
https://git-scm.com/documentation

Easy online tutorial by GitHub:
https://try.github.io

Git Immersion (popular Git tutorial):
http://gitimmersion.com/

Git docs on many languages:
http://www-cs-students.stanford.edu/~blynn/gitmagic/

Research Computing Services 83

https://git-scm.com/documentation
https://try.github.io/
http://gitimmersion.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/

Git GUI Clients

• Sourcetree: https://www.sourcetreeapp.com/

• GitHub Desktop: https://desktop.github.com/

• Others: https://git-scm.com/downloads/guis

84

https://www.sourcetreeapp.com/
https://desktop.github.com/
https://git-scm.com/downloads/guis

