/* OpenSceneGraph example, osganimate. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include osg::AnimationPath* createAnimationPath(const osg::Vec3& center,float radius,double looptime) { // set up the animation path osg::AnimationPath* animationPath = new osg::AnimationPath; animationPath->setLoopMode(osg::AnimationPath::LOOP); int numSamples = 40; float yaw = 0.0f; float yaw_delta = 2.0f*osg::PI/((float)numSamples-1.0f); float roll = osg::inDegrees(30.0f); double time=0.0f; double time_delta = looptime/(double)numSamples; for(int i=0;iinsert(time,osg::AnimationPath::ControlPoint(position,rotation)); yaw += yaw_delta; time += time_delta; } return animationPath; } osg::Node* createBase(const osg::Vec3& center,float radius) { int numTilesX = 10; int numTilesY = 10; float width = 2*radius; float height = 2*radius; osg::Vec3 v000(center - osg::Vec3(width*0.5f,height*0.5f,0.0f)); osg::Vec3 dx(osg::Vec3(width/((float)numTilesX),0.0,0.0f)); osg::Vec3 dy(osg::Vec3(0.0f,height/((float)numTilesY),0.0f)); // fill in vertices for grid, note numTilesX+1 * numTilesY+1... osg::Vec3Array* coords = new osg::Vec3Array; int iy; for(iy=0;iy<=numTilesY;++iy) { for(int ix=0;ix<=numTilesX;++ix) { coords->push_back(v000+dx*(float)ix+dy*(float)iy); } } //Just two colours - black and white. osg::Vec4Array* colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); // white colors->push_back(osg::Vec4(0.0f,0.0f,0.0f,1.0f)); // black int numColors=colors->size(); int numIndicesPerRow=numTilesX+1; osg::UByteArray* coordIndices = new osg::UByteArray; // assumes we are using less than 256 points... osg::UByteArray* colorIndices = new osg::UByteArray; for(iy=0;iypush_back(ix +(iy+1)*numIndicesPerRow); coordIndices->push_back(ix +iy*numIndicesPerRow); coordIndices->push_back((ix+1)+iy*numIndicesPerRow); coordIndices->push_back((ix+1)+(iy+1)*numIndicesPerRow); // one color per quad colorIndices->push_back((ix+iy)%numColors); } } // set up a single normal osg::Vec3Array* normals = new osg::Vec3Array; normals->push_back(osg::Vec3(0.0f,0.0f,1.0f)); osg::Geometry* geom = new osg::Geometry; geom->setVertexArray(coords); geom->setVertexIndices(coordIndices); geom->setColorArray(colors); geom->setColorIndices(colorIndices); geom->setColorBinding(osg::Geometry::BIND_PER_PRIMITIVE); geom->setNormalArray(normals); geom->setNormalBinding(osg::Geometry::BIND_OVERALL); geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,coordIndices->size())); osg::Geode* geode = new osg::Geode; geode->addDrawable(geom); return geode; } osg::Node* createMovingModel(const osg::Vec3& center, float radius) { float animationLength = 10.0f; osg::AnimationPath* animationPath = createAnimationPath(center,radius,animationLength); osg::Group* model = new osg::Group; osg::Node* glider = osgDB::readNodeFile("glider.osg"); if (glider) { const osg::BoundingSphere& bs = glider->getBound(); float size = radius/bs.radius()*0.3f; osg::MatrixTransform* positioned = new osg::MatrixTransform; positioned->setDataVariance(osg::Object::STATIC); positioned->setMatrix(osg::Matrix::translate(-bs.center())* osg::Matrix::scale(size,size,size)* osg::Matrix::rotate(osg::inDegrees(-90.0f),0.0f,0.0f,1.0f)); positioned->addChild(glider); osg::PositionAttitudeTransform* xform = new osg::PositionAttitudeTransform; xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0,1.0)); xform->addChild(positioned); model->addChild(xform); } osg::Node* cessna = osgDB::readNodeFile("cessna.osg"); if (cessna) { const osg::BoundingSphere& bs = cessna->getBound(); float size = radius/bs.radius()*0.3f; osg::MatrixTransform* positioned = new osg::MatrixTransform; positioned->setDataVariance(osg::Object::STATIC); positioned->setMatrix(osg::Matrix::translate(-bs.center())* osg::Matrix::scale(size,size,size)* osg::Matrix::rotate(osg::inDegrees(180.0f),0.0f,0.0f,1.0f)); positioned->addChild(cessna); osg::MatrixTransform* xform = new osg::MatrixTransform; xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0f,2.0)); xform->addChild(positioned); model->addChild(xform); } return model; } osg::Node* createModel(bool overlay, osgSim::OverlayNode::OverlayTechnique technique) { osg::Vec3 center(0.0f,0.0f,0.0f); float radius = 100.0f; osg::Group* root = new osg::Group; float baseHeight = center.z()-radius*0.5; osg::Node* baseModel = createBase(osg::Vec3(center.x(), center.y(), baseHeight),radius); osg::Node* movingModel = createMovingModel(center,radius*0.8f); if (overlay) { osgSim::OverlayNode* overlayNode = new osgSim::OverlayNode(technique); overlayNode->setContinuousUpdate(true); overlayNode->setOverlaySubgraph(movingModel); overlayNode->setOverlayBaseHeight(baseHeight-0.01); overlayNode->addChild(baseModel); root->addChild(overlayNode); } else { root->addChild(baseModel); } root->addChild(movingModel); return root; } int main( int argc, char **argv ) { bool overlay = false; osg::ArgumentParser arguments(&argc,argv); while (arguments.read("--overlay")) overlay = true; osgSim::OverlayNode::OverlayTechnique technique = osgSim::OverlayNode::OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; while (arguments.read("--object")) { technique = osgSim::OverlayNode::OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; overlay=true; } while (arguments.read("--ortho") || arguments.read("--orthographic")) { technique = osgSim::OverlayNode::VIEW_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; overlay=true; } while (arguments.read("--persp") || arguments.read("--perspective")) { technique = osgSim::OverlayNode::VIEW_DEPENDENT_WITH_PERSPECTIVE_OVERLAY; overlay=true; } // initialize the viewer. osgViewer::Viewer viewer; // load the nodes from the commandline arguments. osg::Node* model = createModel(overlay, technique); if (!model) { return 1; } // tilt the scene so the default eye position is looking down on the model. osg::MatrixTransform* rootnode = new osg::MatrixTransform; rootnode->setMatrix(osg::Matrix::rotate(osg::inDegrees(30.0f),1.0f,0.0f,0.0f)); rootnode->addChild(model); // run optimization over the scene graph osgUtil::Optimizer optimzer; optimzer.optimize(rootnode); // set the scene to render viewer.setSceneData(rootnode); viewer.setCameraManipulator(new osgGA::TrackballManipulator()); // viewer.setUpViewOnSingleScreen(1); #if 0 // use of custom simulation time. viewer.realize(); double simulationTime = 0.0; while (!viewer.done()) { viewer.frame(simulationTime); simulationTime += 0.001; } return 0; #else // normal viewer usage. return viewer.run(); #endif }